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abstract

We discuss microlocal aspects of two types of sheaves which are of interest to geometric
representation theory: perverse coherent sheaves and equivariant D-modules.

The category of (constructible) perverse sheaves on a complex variety is characterized by
exactness of the microlocal stalks (or vanishing cycles) functor. We prove an analogue of this
characterization for the category of perverse coherent sheaves on a scheme with a group action.
The main idea is to understand microlocal stalks via local cohomology along half-dimensional
(“Lagrangian”) subvarieties. We define “measuring subvarieties” as an analogue of these
subvarieties in the coherent setting and show how they can be used to characterize perverse
coherent sheaves.

The second part of this thesis is dedicated to understanding the support theory (in the sense
of [bik]) of equivariant D-modules. We discuss how to compute the Hochschild cohomology
of the category of D-modules on a quotient stack via a relative compactification of the diagonal
morphism. We then apply this construction to the case of torus-equivariant D-modules and
describe the Hochschild cohomology as the cohomology of a D-module on the loop space of
the quotient stack.
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1

introduction

This thesis consists of to parts, concerning perverse coherent sheaves and equivariant D-modules
respectively. Both parts are motivated by trying to understand microlocal properties of sheaves
of importance in geometric representation theory. While the specific results of the two parts
look unrelated on the first glance, they are linked by the notion of singular support for coherent
sheaves. We will now give a brief overview of the ideas and results, discussing in particular
how we understand “microlocal” in each case.

1.1. microlocal theory of perverse coherent sheaves

The first part of this thesis is motivated by two theories that came to recent prominence in
algebraic geometry and in particular geometric representation theory:

• The theory of perverse coherent sheaves, independently introduced by Bezrukavnikov
(following Deligne) [ab], Kashiwara [k1], Gabber [g] and Bridgeland [b5].

• A theory of “singular support” for coherent sheaves, worked out by Arinkin and Gaitsgory
for their formulation of the Geometric Langlands Conjecture [ag], based on earlier work
by Benson, Iyengar and Krause [bik].

Removing the word “coherent”, these two theories are by now classical and indispensable tools
in the study of constructible sheaves. They can also be beautifully combined to elucidate the
microlocal nature of perverse sheaves [ks]. Thus the question naturally arises whether the
coherent versions of these theories can be combined too.

Coming form representation theory, we will be primarily concerned with the definition of
perverse coherent sheaves by Bezrukavnikov. We will recall the basic constructions and theo-
rems of this theory below. However we should note from the outset that the Arinkin–Gaitsgory
theory of singular support does not interact well with these perverse coherent sheaves. For
example the perverse t-structure on SL2-equivariant coherent sheaves on 𝔸2 is non-trivial, but
the singular support of coherent sheaves on either 𝔸2 or the stack 𝔸2/ SL2 is always trivial.
Thus we have to understand the microlocal nature of perverse coherent sheaves in a different
way.



1 introduction

Perverse (constructible) sheaves

Before discussing our results, let us briefly review the theory of perverse sheaves in the setting
that is closest to the perverse coherent sheaves of [ab]. For readability, we will restrict to the
complex case and the middle perversity.

Thus we let 𝑋 be a complex variety and fix a stratification 𝔖 of 𝑋 by smooth complex subva-
rieties. Attached to this setup we have the bounded derived category 𝐃u�

𝔖(𝑋) of 𝔖-constructible
sheaves, i.e. the full subcategory of the category of constructible sheaves on 𝑋 consisting of
sheaves which are local systems along each stratum. The perverse t-structure on this category
is then given by the two full subcategories

u�𝐃≤0
𝔖 (𝑋) = {ℱ ∈ 𝐃u�

𝔖(𝑋) ∶ 𝑖∗u�ℱ ∈ 𝐃≤− 1
2 dimℝ u�(𝑆) for all 𝑆 ∈ 𝔖},

u�𝐃≥0
𝔖 (𝑋) = {ℱ ∈ 𝐃u�

𝔖(𝑋) ∶ 𝑖!u�ℱ ∈ 𝐃≥− 1
2 dimℝ u�(𝑆) for all 𝑆 ∈ 𝔖},

(1.1)

where 𝑖u� ∶ 𝑆 ↪ 𝑋 is the inclusion. That this is indeed a t-structure was proved by Beilinson,
Bernstein and Deligne in [bbd]. In particular this means that the category

Perv𝔖(𝑋) = u�𝐃≤0
𝔖 (𝑋) ∩ u�𝐃≥0

𝔖 (𝑋)

is Abelian. It is called the category of (middle) perverse sheaves on 𝑋 with respect to 𝔖.
The category Perv𝔖(𝑋) is intimately connected to both the singularities of 𝑋 (via intersection
cohomology) and, if 𝑋 is smooth, the category of D-modules on 𝑋 (via the Riemann-Hilbert
correspondence). It has many nice properties, of which we want to mention the following two
which are of particular importance in the coherent analogue.

• The Verdier duality functor on 𝐃u�
𝔖(𝑋) is compatible with the perverse t-structure and in

particular restricts to an involution of Perv𝔖(𝑋).

• The simple objects of Perv𝔖(𝑋) are in bijection with pairs (𝑆, ℒ) consisting of a stratum
𝑆 ∈ 𝔖 and an irreducible local system ℒ on 𝑆.

Perverse coherent sheaves

The definition of perverse sheaves can be translated to coherent sheaves with some modification.
We will again only discuss the middle perversity here. The general definition will be reviewed
in Section 2.2.

We let 𝑋 be a scheme of finite type over a field 𝑘. We would like to pick a stratification of
𝑋 and consider the category of coherent sheaves whose restriction to each stratum is a vector
bundle. Unfortunately this is not a triangulated subcategory of 𝐃u�

coh(𝑋). For example for a
generic function 𝑓 the cone of 𝒪u�

⋅u�
−−→ 𝒪u� will not be a vector bundle on the open stratum.

The solution to this problem is to introduce a group action and replace “smoothness along a
stratification” by “equivariantness”. Thus we let 𝐺 be an affine algebraic group over 𝑘 acting
on 𝑋 and consider the bounded derived category 𝐃u�

coh(𝑋)u� = 𝐃u�
coh(𝑋/𝐺) of 𝐺-equivariant
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1.1 Microlocal theory of perverse coherent sheaves

coherent sheaves on 𝑋. Instead of the set of strata 𝔖 we will look at the set 𝑋u�,gen of generic
points of 𝐺-equivariant subschemes of 𝑋.

In the constructible setting we required the stratification to be complex, so that we could take
half of the (real) dimension. Now we will require directly that all 𝐺-orbits are even-dimensional.
The main example of this situation is the nilpotent cone of a semi-simple algebraic group with
the adjoint action.

The only piece remaining to translate from the constructible setting are the restriction functors.
For this it turns out that the 𝒪-module functors do not give the correct definition and we have
to use the 𝑘-module functors instead. Thus, if 𝜄u� ∶ {𝑥} → 𝑋 is the inclusion of 𝑥 ∈ 𝑋u�,gen and
ℱ ∈ 𝐃u�

coh(𝑋)u�, we let 𝜾∗
u�ℱ = ℱu� be the (derived) functor of talking stalks. Similarly, we let

𝜾!
u�ℱ = 𝜾∗

u�Γ{u�}ℱ be the derived functor of local cohomology.
All together, in analogy with (1.1) we now define the two full subcategories

u�𝐃≤0(𝑋)u� = {ℱ ∈ 𝐃u�
coh(𝑋) ∶ 𝜾∗

u�ℱ ∈ 𝐃≤− 1
2 dim u�(𝒪u�) for all 𝑥 ∈ 𝑋u�,gen},

u�𝐃≥0(𝑋)u� = {ℱ ∈ 𝐃u�
coh(𝑋) ∶ 𝜾!

u�ℱ ∈ 𝐃≥− 1
2 dim u�(𝒪u�) for all 𝑥 ∈ 𝑋u�,gen},

of 𝐃u�
coh(𝑋)u�. This is indeed a t-structure [ab]. The heart of this t-structure is called the category

of (middle) perverse sheaves on 𝑋. It is again an Abelian category with lots of interesting
features. In particular we have the same properties as above:

• Grothendieck-Serre duality is an involution of the category of perverse coherent sheaves.

• The simple objects are indexed by pairs (𝑂, 𝒱), where 𝑂 is a G-orbit and 𝒱 is an irre-
ducible 𝐺-equivariant vector bundle on 𝑂 (or equivalently an irreducible representation
of the stabilizer of 𝐺 on 𝑂).

Bezrukavnikov used the second property to establish a bijection between pairs (𝑂, 𝑉) of a
nilpotent orbit 𝑂 and an irreducible representation 𝑉 of the stabilizer of 𝐺 on 𝑂, and the set Λ+

of dominant weight of 𝐺, thus proving a conjecture of Lusztig [b3].

Microlocal theory (constructible version)

The definition of perverse sheaves seems very mysterious. Why would the category defined
this way be important and have nice features? One answer to this question was proposed by
Kashiwara and Schapira [ks] in their microlocal viewpoint.

A good way to understand the microlocal nature of perverse sheaves is via the vanishing
cycles functor. For this let 𝑓 be a (local) holomorphic function on 𝑋. Then the vanishing
cycles 𝜑u� ∶ 𝐃u�

constr(𝑋) → 𝐃u�
constr(𝑓 −1(0)) restrict to a functor on the corresponding categories

of perverse sheaves
𝜑u� ∶ Perv(𝑋) → Perv(𝑓 −1(0)).

If in addition we let 𝑓 be a stratified Morse function with critical point 𝑥, then taking corre-
sponding microlocal stalks

(𝜑u� (−))u� ∶ 𝐃u�
𝔖(𝑋) → 𝐃(ℂ)

3



1 introduction

sends perverse sheaves to vector spaces concentrated in degree 0. In fact, this property charac-
terizes perverse sheaves among all 𝔖-constructible sheaves on 𝑋 [j].

In a further reformulation, we can take local cohomology along the unstable manifold 𝑍 of
ℜ𝔢𝑓 and require that this is concentrated in degree 0. We note that

dimℝ 𝑍 = 1
2 dimℝ 𝑋.

Microlocal theory (coherent version)

This last observation can be translated to the world of coherent sheaves. For this purpose we
will define measuring subvarieties of 𝑋. Roughly speaking, these are subvarieties of 𝑋 which
intersects each 𝐺-orbit in a half dimensional subvariety. We will give the precise definition in
Chapter 3, where we will also prove the following analogue of the above characterization of
perverse (constructible) sheaves. See Theorem 3.8 for the exact statement and some variants.

Theorem 1.1. A sheaf ℱ ∈ 𝐃u�
coh(𝑋)u� is perverse if and only if Γu�ℱ is concentrated in

cohomological degree 0 for sufficiently many measuring subvarieties 𝑍 of 𝑋.

1.2. hochschild cohomology of categories of d-modules

Given a manifold 𝑋 and a category of sheaves on 𝑋, microlocal geometry asks whether these
sheaves can be localized not just on 𝑋 but also with respect to codirections, i.e. on the cotangent
space 𝑇∗𝑋. For example, for constructible sheaves this leads to the notion of microsupport
discussed in detail in [ks]. More generally, given a category of sheaves on a space 𝑋, we can
ask whether it is possible to localize them on some space that is strictly larger than 𝑋 itself.

Even more generally one can ask the following question: Given a 𝑘-linear category 𝐂, can
one find a space over which 𝐂 localizes? For co-complete compactly generated triangulated
categories one answer is provided by [bik]: To each map from a graded-commutative ring 𝑅
to the center of 𝐂 the authors associate the triangulated support functor suppu�, assigning to
each object 𝐴 ∈ 𝐂 a subset suppu� 𝐴 ⊆ Spec 𝑅. This construction can be used to unify various
theories of support in different areas of mathematics (though it does not yield the microlocal
support of constructible sheaves).

We are led to consider the universal algebra acting on the category with this construction,
i.e. the Hochschild cohomology of 𝐂. For a complete (pre-triangulated) dg category 𝐂 the
Hochschild cohomology is the dg algebra of derived endomorphisms of the identity functor of
𝐂:

HH•(𝐂) = 𝐑Hom(Id𝐂, Id𝐂) = Hom𝐅𝐮𝐧𝐜𝐭(𝐂,𝐂)(Id𝐂, Id𝐂).

The ring 𝑅 = ⨁ HH2u�(HH•(𝐂) is commutative and hence one can define for each 𝐴 ∈ 𝐂 the
support suppu� 𝐴 as a subset of Spec 𝑅. Thus understanding the Hochschild cohomology of a dg
category can be an important step to understanding the category itself.
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1.2 Hochschild cohomology of categories of D-modules

This construction, applied to the category of (ind-)coherent sheaves on a (quasismooth, dg-)
scheme yields the singular support of coherent sheaves which already served as the motivation
for the first part of this thesis. More concretely, Arinkin and Gaitsgory used singular support
for the category 𝐈𝐧𝐝𝐂𝐨𝐡(LocSysu�) in their formulation of the geometric Langlands conjecture
[ag]. By Langlands duality, one should then have a matching support theory for the category
𝐃𝐌𝐨𝐝(Bunu�) and the question arises whether it is possible to formulate this theory in a way
that is intrinsic to D-modules.

A first step to this – and also a problem of independent interest – is to understand the
Hochschild cohomology of the category 𝐃𝐌𝐨𝐝(𝐗) of D-modules on a stack 𝐗. We will review
the general setup and basic properties of D-modules on (QCA) stacks in Chapter 4. The upshot
is that we have an isomorphism of dg algebras

HH•(𝐃𝐌𝐨𝐝(𝐗)) ≅ Hom𝐃𝐌𝐨𝐝(u�×u�)(Δ∗𝜔𝐗, Δ∗𝜔𝐗), (1.2)

where Δ∶ 𝐗 × 𝐗 → 𝐗 is the diagonal morphism and 𝜔𝐗 is the dualizing module. In particular
if 𝐗 is a (separated) scheme, then Δ is a closed embedding and (Δ∗, Δ∗) adjunction combined
with Kashiwara’s Lemma show that HH•(𝐃𝐌𝐨𝐝(𝐗)) is isomorphic to the de Rham cohomology
of 𝐗. However, if 𝐗 is not an algebraic space (and hence Δ is not proper) then the situation
becomes more complicated.

By Verdier duality and adjunction we can always rewrite (1.2) as

HH•(𝐃𝐌𝐨𝐝(𝐗)) ≅ Hom𝐃𝐌𝐨𝐝(u�)(𝑘𝐗, Δ!Δ!𝑘𝐗)op = ΓdR(𝐗, Δ!Δ!𝑘𝐗)op.

It is now tempting to look at the Cartesian square

𝓛𝐗 𝐗

𝐗 𝐗 × 𝐗

u�1

u�2 Δ

Δ

where
𝓛𝐗 = 𝐗 ×

𝐗×𝐗
𝐗

is the (derived) loop space of 𝐗 and try to express the Hochschild cohomology as the cohomology
of some sheaf on 𝓛𝐗. Naively we could expect the existence of an isomorphism

ΓdR(𝐗, Δ!Δ!𝑘𝐗) ≅ ΓdR(𝐗, 𝑝2,!𝑝!
1𝑘𝐗). (1.3)

Unfortunately, the two sides are in general not isomorphic (the stack 𝐗 = ℙ1/𝔸1 is an easy
counter-example).

In Chapter 5 we will investigate how to quantify the cone of the morphism

𝑝2,!𝑝!
1𝑘𝐗 → Δ!Δ!𝑘𝐗

and thus the failure of the naive isomorphism (1.3) to hold. As an application, we will prove
the following theorem, giving a class of stacks where (1.3) is indeed an isomorphism.
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1 introduction

Theorem 1.2. Let 𝐺 ≅ 𝔾u�
u� be a torus acting locally linearly on a scheme 𝑋 of finite type over

𝑘. Then there is a canonical isomorphism of algebras

HH•(𝐃𝐌𝐨𝐝(𝑋/𝐺)) ≅ ΓdR(𝑋/𝐺, 𝑝2,!𝑝!
1𝑘u�/u�)op,

where the algebra structure on ΓdR(𝑋/𝐺, 𝑝2,!𝑝!
1𝑘u�/u�) is induced by the groupoid structure on

𝓛(𝑋/𝐺).
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I

A microlocal description of
perverse coherent sheaves



2

prerequisites

Throughout this part we will be concerned with a scheme 𝑋 with an action by an affine group
scheme 𝐺. We assume that 𝑋 and 𝐺 are both of finite type over a field 𝑘.

We will make use of the usual notations for derived categories. Thus 𝐃qc(𝑋) is the derived
category of the Abelian category of quasi-coherent sheaves on 𝑋 and 𝐃coh(𝑋) is its full subcat-
egory of complexes with coherent cohomology. More generally 𝐃(𝑋) is the derived category
of sheaves of 𝑘-modules on 𝑋. For a ring 𝑅, the derived category of 𝑅-modules will be denoted
by 𝐃(𝑅). To avoid cluttering the notation we will also usually suppress the signifiers ℝ and 𝕃
on functors between derived categories.

If 𝑌 is a subscheme of 𝑋 we will always write 𝜄u� for the inclusion 𝑌 ↪ 𝑋.

2.1. operations on coherent sheaves

We will be mainly concerned with the category 𝐃u�
coh(𝑋)u�, the bounded derived category of

𝐺-equivariant coherent sheaves on 𝑋. For the reader familiar with stacks, this is the same
category as the bounded derived category of coherent sheaves on the quotient stack [𝑋/𝐺]. It
is also equivalent to the full subcategory of 𝐃u�

qc(𝑋)u� consisting of complexes with coherent
cohomology [ab, Corollary 2.11]. There is a forgetful functor

Forget ∶ 𝐃u�
coh(𝑋)u� → 𝐃u�

coh(𝑋)

to the non-equivariant bounded derived category of coherent sheaves on 𝑋. We will frequently
apply functors defined on the latter category to equivariant sheaves without explicitly mentioning
the intervening forgetful functor.

Let 𝑍 be a closed subscheme of 𝑋. Then there are functors 𝜄!
u� and 𝜄∗

u� from 𝐃u�
coh(𝑋) to

𝐃u�
coh(𝑍), defined by

𝜄∗
u�(−) = 𝒪u� ⊗𝒪u�

− and 𝜄!
u�(−) = ℋℴ𝓂𝒪u�

(𝒪u� , −).

We note again that the symbols ⊗ and ℋℴ𝓂 denote the corresponding derived functors. If 𝑈 is
an open subscheme of 𝑋 then the functor 𝜄∗

u� = 𝜄!
u� is the restriction functor 𝐃u�

coh(𝑋) → 𝐃u�
coh(𝑈).

For a general locally closed subscheme, the restriction functors are defined be composing the
above functors.



2.1 Operations on coherent sheaves

We will also need the corresponding 𝑘-module functors, which we will denote by bold letters.
In particular, if 𝑍 is a closed subspace of 𝑋 (as a topological space), then we set

𝜾!
u�(−) = ℋℴ𝓂u�u�

(𝑘u� , −).

Following [h, Variation 3 in iv.1] we write

Γu� = 𝜾u�,∗𝜾!
u� .

Again we note that these functors should be seen as functors between the derived categories.
It is well known that if ℱ is a (complex of) quasi-coherent sheaf(s) on 𝑋, then Γu�ℱ is again
quasi-coherent [sga2, Corollaire ii.3].

Let 𝑥 be a (not necessarily closed) point of 𝑋. We will write 𝜾∗
u� for the functor of talking

stalks at 𝑥 and set 𝜾!
u� = 𝜾∗

u�Γ{u�}. As noted before, we will apply all of these functors to equivariant
sheaves without explicitly mentioning the forgetful functor.

Finally we will need the Grothendieck-Verdier duality functor on 𝐃u�
coh(𝑋)u�. It is defined

exactly as in the non-equivariant situation (cf. [h, Chapter v]). Thus, an equivariant dualizing
complex on 𝑋 is an object 𝒟𝒞 ∈ 𝐃u�

coh(𝑋)u� such each object ℱ ∈ 𝐃u�
coh(𝑋)u� is 𝒟𝒞-reflexive,

i.e. such that the natural transformation

ℱ → ℋℴ𝓂(ℋℴ𝓂(ℱ, 𝒟𝒞), 𝒟𝒞) (ℱ ∈ 𝐃u�
coh(𝑋))

is an isomorphism. We write 𝔻 for the endofunctor ℋℴ𝓂(−, 𝒟𝒞) of 𝐃u�
coh(𝑋)u�. Since

ℋℴ𝓂 commutes with the forgetful functor, if 𝒟𝒞 is an equivariant dualizing complex, then
Forget(𝒟𝒞) ∈ 𝐃u�

coh(𝑋) is a (non-equivariant) dualizing complex. Under our assumptions on
𝑋 there always exists an equivariant dualizing complex 𝒟𝒞 [ab, Theorem 2.18]. Using [h,
v.7], we will further assume that for each (not necessarily closed) point 𝑥 ∈ 𝑋 the complex
𝜾!

u�𝒟𝒞 is concentrated in cohomological degree − dim 𝑥.
We finish this section with two lemmas about vanishing of local cohomology above or below

a certain degree.

Lemma 2.1. Let ℱ be a coherent sheaf on 𝑋 and let 𝑥 be a closed point of 𝑋. Then 𝜾∗
u�𝔻ℱ ∈

𝐃≥0(𝒪u�) if and only if 𝜾!
u�ℱ ∈ 𝐃≤0(𝒪u�).

Proof. The proof of this lemma is essentially the same as the one of [ab, Lemma 3.3(a)].
Concretely, by [h, v.6], there is an isomorphism of functors

𝜾!
u�(−) ≅ Hom𝒪u�

(𝔻(−), ℐu�),

where ℐu� is the injective hull of the residue field of 𝒪u�. The statement now follows from the
fact that Hom𝒪u�

(−, ℐu�) is exact and kills no finitely generated 𝒪u�-module [h, v.5].

Lemma 2.2. Let ℱ be a coherent sheaf on 𝑋 and let 𝑍 be a closed subvariety of 𝑋. Then
Γu�ℱ ∈ 𝐃≥0(𝑍) if and only if 𝜄!

u�ℱ ∈ 𝐃≥0(𝑍).

Proof. This is the equivalence of (i) and (ii) in [sga2, Proposition vii.1.2] with 𝑌 = 𝑆 = 𝑍,
𝐺 = ℱ, 𝐹 = 𝒪u� and 𝑛 = 1.
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2 prerequisites

2.2. perverse coherent sheaves

We keep the general assumptions on 𝑋 and the dualizing complex 𝒟𝒞. We write 𝑋u�,gen for
the set of generic points of 𝐺-stable subschemes of 𝑋. It is a subset of the topological space of
𝑋 and we will consider it with the induced topology.

By a perversity we mean a function 𝑝∶ {0, … , dim 𝑋} → ℤ. For 𝑥 ∈ 𝑋u�,gen we abuse notation
and set 𝑝(𝑥) = 𝑝(dim 𝑥). Then 𝑝∶ 𝑋u�,gen → ℤ is a perversity function in the sense of [b2].
Note that we insist that 𝑝(𝑥) only depends on the dimension of 𝑥.

A perversity is called monotone if it is decreasing and comonotone if the dual perversity
𝑝(𝑛) = −𝑛 − 𝑝(𝑛) is decreasing. It is strictly monotone (resp. strictly comonotone) if for all
𝑥, 𝑦 ∈ 𝑋u�,gen with dim 𝑥 < dim 𝑦 one has 𝑝(𝑥) > 𝑝(𝑦) (resp. 𝑝(𝑥) > 𝑝(𝑦)). Note that a strictly
monotone perversity is not necessarily strictly decreasing (e.g. if 𝑋 only has even-dimensional
𝐺-orbits).

Following [ab] we now have all ingredients to define the perverse t-structure on 𝐃u�
coh(𝑋)u�.

Definition 2.3. Given a perversity 𝑝 we define the following full subcategories of 𝐃u�
coh(𝑋)u�:

u�𝐃≤0(𝑋)u� = {ℱ ∈ 𝐃u�
coh(𝑋) ∶ 𝜾∗

u�ℱ ∈ 𝐃≤u�(u�)(𝒪u�) for all 𝑥 ∈ 𝑋u�,gen},
u�𝐃≥0(𝑋)u� = {ℱ ∈ 𝐃u�

coh(𝑋) ∶ 𝜾!
u�ℱ ∈ 𝐃≥u�(u�)(𝒪u�) for all 𝑥 ∈ 𝑋u�,gen}.

Theorem 2.4 ([ab, Theorem 3.10]). If 𝑝 is monotone and comonotone, then (u�𝐃≤0(𝑋)u�, u�𝐃≤0(𝑋)u�)
defines a t-structure on 𝐃u�

coh(𝑋)u�.

This t-structure is called the perverse t-structure with respect to 𝑝 on 𝐃u�
coh(𝑋)u�. Objects in

its heart are called perverse coherent sheaves (with respect to 𝑝 on 𝑋).
The perverse t-structure is compatible with duality, exchanging the perversity 𝑝 with its dual.

Lemma 2.5 ([ab, Lemma 3.3]). Let 𝑝 be any perversity. Then

𝔻(u�𝐃≤0(𝑋)u�) = u�𝐃≥0(𝑋)u�.

Example 2.6. The best-studied case of perverse coherent sheaves is the nilpotent cone 𝑁 of a
semi-simple algebraic group 𝐺 with the adjoint action. It is well known that there are finitely
many 𝐺-orbits on 𝑁 , all of which are even dimensional. Thus there is a middle perversity given
by

𝑝(𝑥) = 𝑝(𝑥) = −1
2 dim 𝑥, 𝑥 ∈ 𝑁u�,gen.

This t-structure has important applications in geometric representation theory, for example [b3]
and [bm]. For an overview of the theory of perverse coherent sheaves on nilpotent cones and
the related category of exotic sheaves we refer to [a]. ◯

For later use we state the following variant of the Grothendieck Finiteness Theorem [sga2,
Théorème 2.1]. The given formulation is from [ab, Corollary 3.12], where the reader can find a
short proof using the theory of perverse coherent sheaves.
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2.2 Perverse coherent sheaves

Theorem 2.7. Let 𝑝 be a monotone and comonotone perversity on 𝑋. Let 𝑥 ∈ 𝑋u�,gen, set
𝑈 = 𝑋 − 𝑥 and let 𝑗 ∶ 𝑈 ↪ 𝑋 be the inclusion. Let ℱ ∈ u�𝐃≥0(𝑈)u�. Then 𝐻u�(𝑗∗ℱ) is coherent
for 𝑛 ≤ 𝑝(𝑥) − 2.

11



3

measuring subvarieties

Assumption 3.1. We will always assume that 𝑝 is a monotone and comonotone perversity
function. Then Theorem 2.4 guarantees the existence the perverse t-structure on 𝐃u�

coh(𝑋)u�.

3.1. some reformulations

In this section we will give some reformulations of the perverse t-structure from Definition 2.3.
The equivalent conditions are inspired by Kashiwara’s definition of a (non-equivariant) perverse
t-structure on 𝐃u�

coh(𝑋)u� in [k1].

Proposition 3.2. Let ℱ ∈ 𝐃u�
coh(𝑋)u�. The following are equivalent:

(i) ℱ ∈ u�𝐃≤0(𝑋)u�, i.e. 𝜾∗
u�ℱ ∈ 𝐃≤u�(u�)(𝒪u�) for all 𝑥 ∈ 𝑋u�,gen;

(ii) 𝑝(dim supp 𝐻u�(ℱ)) ≥ 𝑘 for all 𝑘.

A crucial fact that we will implicitly use quite often in the following arguments is that the
support of a coherent sheaf is always closed. In particular, this means that if 𝑥 is a generic point
and ℱ a coherent sheaf, then 𝜾∗

u�ℱ = 0 if and only if ℱ|u� = 0 for some open set 𝑈 intersecting
𝑥.

Proof. First let ℱ ∈ u�𝐃≤0(𝑋)u� and assume for contradiction that there exists an integer 𝑘 such
that 𝑝(dim supp 𝐻u�(ℱ)) < 𝑘. Let 𝑥 be the generic point of an irreducible component of maximal
dimension of supp 𝐻u�(ℱ). Then 𝐻u�(𝜾∗

u�ℱ) ≠ 0. But on the other hand, 𝜾∗
u�ℱ ∈ 𝐃≤u�(u�)(𝒪u�) and

𝑝(𝑥) = 𝑝(dim supp 𝐻u�(ℱ)) < 𝑘, yielding a contradiction.
Conversely assume that 𝑝(dim supp 𝐻u�(ℱ)) ≥ 𝑘 for all 𝑘 and let 𝑥 ∈ 𝑋u�,gen. If 𝐻u�(𝜾∗

u�ℱ) ≠
0, then dim 𝑥 ≤ dim supp 𝐻u�(ℱ). Thus monotonicity of the perversity implies that ℱ ∈
u�𝐃≤0(𝑋)u�.

Proposition 3.3. Let ℱ ∈ 𝐃u�
coh(𝑋)u� and let 𝑝 be strictly monotone.

(i) ℱ ∈ u�𝐃≥0(𝑋)u�, i.e. 𝜾!
u�ℱ ∈ 𝐃≥u�(u�)(𝒪u�) for all 𝑥 ∈ 𝑋u�,gen;

(ii) Γu�ℱ ∈ 𝐃≥u�(u�)(𝑋) for all 𝑥 ∈ 𝑋u�,gen;

(iii) Γu�ℱ ∈ 𝐃≥u�(dim u�)(𝑋) for all 𝐺-invariant closed subvarieties 𝑌 of 𝑋;



3.1 Some reformulations

(iv) dim (𝑥 ∩ supp (𝐻u�(𝔻ℱ))) ≤ −𝑝(𝑥) − 𝑘 for all 𝑥 ∈ 𝑋u�,gen and all 𝑘.

Proof. The implications from (iii) to (ii) and (ii) to (i) are trivial and the equivalence of (ii)
and (iv) follows from Lemma 3.4 below. Thus we only need to show that (i) implies (iii). So
assume that ℱ ∈ u�𝐃≥0(𝑋)u�. We induct on the dimension of 𝑌 .

If dim 𝑌 = 0, then Γ(𝑋, Γu�ℱ) = ⨁u�∈u�u�,gen 𝜾!
u�ℱ and thus Γu�ℱ ∈ 𝐃≥u�(0)(𝑋) by assumption.

Now let dim 𝑌 > 0. We first assume that 𝑌 is irreducible with generic point 𝑥 ∈ 𝑋u�,gen. Let
𝑘 be the smallest integer such that 𝐻u�(Γu�ℱ) ≠ 0 and assume that 𝑘 < 𝑝(𝑥). We will show that
this implies that 𝐻u�(Γu�ℱ) = 0, giving a contradiction.

We first show that 𝐻u�(Γu�ℱ) is coherent. Let 𝑗 ∶ 𝑋 − 𝑥 ↪ 𝑋 and consider the distinguished
triangle

Γu�ℱ → ℱ → 𝑗∗𝑗∗ℱ +1−−−→ .

Applying cohomology to it we get an exact sequence

𝐻u�−1(𝑗∗𝑗∗ℱ) → 𝐻u�(Γu�ℱ) → 𝐻u�(ℱ).

By assumption, 𝑘−1 ≤ 𝑝(𝑥)−2, so that 𝐻u�−1(𝑗∗𝑗∗ℱ) is coherent by the Grothendieck Finiteness
Theorem 2.7. As 𝐻u�(ℱ) is coherent by definition, this implies that 𝐻u�(Γu�ℱ) also has to be
coherent.

Set 𝑍 = supp 𝐻u�(Γu�ℱ). Then, since 𝜄∗
u�𝐻u�(Γu�ℱ) = 𝐻u�(𝜾!

u�ℱ) vanishes, 𝑍 is a proper closed
subset of 𝑥. We consider the distinguished triangle

𝐻u�(Γu�ℱ)[−𝑘] → Γu�ℱ → 𝜏>u�Γu�ℱ +1−−−→,

and apply Γu� to it:

Γu�𝐻u�(Γu�ℱ)[−𝑘] = 𝐻u�(Γu�ℱ)[−𝑘] → Γu�ℱ → Γu�𝜏>u�Γu�ℱ +1−−−→ .

Since dim 𝑍 < dim 𝑥, we can use the induction hypothesis and monotonicity of 𝑝 to deduce that
Γu�ℱ is in degrees at least 𝑝(dim 𝑍) ≥ 𝑝(𝑥) > 𝑘. Clearly Γu�𝜏>u�Γu�ℱ is also in degrees larger
than 𝑘. Hence 𝐻u�(Γu�ℱ) has to vanish.

If 𝑌 is not irreducible, let 𝑌1 be an irreducible component of 𝑌 and 𝑌2 be the union of the
other components. Then there is a Mayer-Vietoris distinguished triangle

Γu�1∩u�2
ℱ → Γu�1

ℱ ⊕ Γu�2
ℱ → Γu�ℱ +1−−−→,

where Γu�1∩u�2
ℱ ∈ 𝐃≥u�(dim u�1∩u�2)(𝑋) ⊆ 𝐃≥u�(dim u�)+1(𝑋) (by the induction hypothesis and strict

monotonicity of 𝑝) and Γu�1
ℱ and Γu�2

ℱ are in 𝐃≥u�(dim u�)(𝑋) by induction on the number of
components of 𝑌 . Thus Γu�ℱ ∈ 𝐃≥u�(dim u�)(𝑋) as required.

Lemma 3.4. Let ℱ ∈ 𝐃u�
coh(𝑋), 𝑍 a closed subset of 𝑋, and 𝑛 an integer. Then Γu�ℱ ∈ 𝐃≥u�

qc (𝑋)
if and only if dim(𝑍 ∩ supp(𝐻u�(𝔻ℱ))) ≤ −𝑘 − 𝑛 for all 𝑘.
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3 measuring subvarieties

This lemma extends [k1, Proposition 5.2] to singular varieties. The proof is essentially the
same as for the smooth case, but we will include it here for completeness.

Proof. By [sga2, Proposition vii.1.2], Γu�ℱ ∈ 𝐃≥u�
qc (𝑋) if and only if

ℋℴ𝓂(𝒢, ℱ) ∈ 𝐃≥u�
qc (()𝑋) (3.1)

for all 𝒢 ∈ 𝐂𝐨𝐡(𝑋) with supp 𝒢 ⊆ 𝑍. Let 𝑑(𝑛) = −𝑛 be the dual standard perversity. Then
by [b2, Lemma 5a], (3.1) holds if and only if 𝔻ℋℴ𝓂(𝒢, ℱ) ∈ u�𝐃≤−u�(𝑋)u�. By [h, Propo-
sition v.2.6], 𝔻ℋℴ𝓂(𝒢, ℱ) = 𝒢 ⊗𝒪u�

𝔻ℱ, so that by Proposition 3.2 we need to show
that

dim supp 𝐻u� (𝒢 ⊗𝒪u�
𝔻ℱ) ≤ −𝑘 − 𝑛

for all 𝑘. By [k1, Lemma 5.3] (whose proof does not use the smoothness assumption) this is
equivalent to

dim (𝑍 ∩ supp 𝐻u�(𝔻ℱ)) ≤ −𝑘 − 𝑛

for all 𝑘, completing the proof.

3.2. perverse coherent sheaves via measuring subvarieties

Assumption 3.5. From now on we will assume that the 𝐺-action on 𝑋 has finitely many orbits.

Definition 3.6. Let 𝑝 be a perversity. A 𝑝-measuring subvariety of 𝑋 is a closed subvariety 𝑍
of 𝑋 such that

dim(𝑥 ∩ 𝑍) = dim 𝑥 + 𝑝(𝑥)

for each 𝑥 ∈ 𝑋u�,gen with 𝑥 ∩ 𝑍 ≠ ∅. If in addition 𝑥 ∩ 𝑍 is a set-theoretic local complete
intersection in 𝑥 for each 𝑥 ∈ 𝑋u�,gen, then 𝑍 is called a strong 𝑝-measuring subvariety. A
(strong) 𝑝-measuring collection of subvarieties of 𝑋 is a collection 𝔐 of (strong) 𝑝-measuring
subvarieties 𝑍 such that for each 𝑥 ∈ 𝑋u�,gen there exists 𝑍 ∈ 𝔐 with 𝑥 ∩ 𝑍 ≠ ∅.

Remark 3.7. Let 𝑍 be a 𝑝-measuring subvariety. The condition on 𝑝-measuring subvarieties
can be rewritten as dim(𝑥 ∩ 𝑍) = −𝑝(𝑥) and codimu�(𝑥 ∩ 𝑍) = −𝑝(𝑥). Thus comonotonicity of
𝑝 ensures that if dim 𝑦 ≤ dim 𝑥 then dim(𝑦 ∩ 𝑍) ≤ dim(𝑥 ∩ 𝑍). Monotonicity of 𝑝 then further
says that codimu�(𝑦 ∩ 𝑍) ≤ codimu�(𝑥 ∩ 𝑍).

We clearly have 0 ≤ dim(𝑥 ∩ 𝑍) ≤ dim 𝑥 and hence − dim 𝑥 ≤ 𝑝(𝑥) ≤ 0. We will show in
Theorem 3.10 that the condition − dim 𝑥 ≤ 𝑝(𝑥) ≤ 0 is sufficient for the (local) existence of a
strong 𝑝-measuring collection.

Theorem 3.8. Let ℱ ∈ 𝐃u�
coh(𝑋)u�.

(i) Assume 𝑝 is strictly monotone and that 𝑋 has a 𝑝-measuring collection 𝔐. Then the
following are equivalent.

(a) ℱ ∈ u�𝐃≥0(𝑋)u�;

14



3.2 Perverse coherent sheaves via measuring subvarieties

(b) 𝑖!u�ℱ ∈ 𝐃≥0(𝑍) for all 𝑍 ∈ 𝔐;
(c) Γu�ℱ ∈ 𝐃≥0(𝑋) for all 𝑍 ∈ 𝔐.

(ii) Assume that 𝑝 is strictly comonotone and that 𝑋 has a 𝑝-measuring collection 𝔐. Then
the following are equivalent.

(a) ℱ ∈ u�𝐃≤0(𝑋)u�;
(b) Γu�𝑖∗u�ℱ ∈ 𝐃≤0(𝑍) for all 𝑍 ∈ 𝔐 and all 𝑧 ∈ 𝑍 .

(iii) Assume that 𝑋 has a strong 𝑝-measuring collection 𝔐. Then the following are equiva-
lent.

(a) ℱ ∈ u�𝐃≤0(𝑋)u�;
(b) Γu�ℱ ∈ 𝐃≤0(𝑋) for all 𝑍 ∈ 𝔐.

In particular, if 𝑝 is strictly monotone and 𝑋 has a strong 𝑝-measuring collection 𝔐, then ℱ
is perverse with respect to 𝑝 if and only if Γu�ℱ is cohomologically concentrated in degree 0
for each 𝑍 ∈ 𝔐.

Proof of Theorem 3.8(i). The equivalence of (c) and (b) follows directly from Lemma 2.2. We
will prove the equivalence of (a) and (c).

By Proposition 3.3, ℱ ∈ u�𝐃≥0(𝑋)u� if and only if

dim (𝑥 ∩ supp (𝐻u�(𝔻𝐹))) ≤ −𝑝(𝑥) − 𝑘 for all 𝑥 ∈ 𝑋u�,gen and all 𝑘. (3.2)

Using Lemma 3.4 for Γu�ℱ ∈ 𝐃≥0(𝑋), we see that we have to show the equivalence of (3.2)
with

dim (𝑍 ∩ supp (𝐻u�(𝔻𝐹))) ≤ −𝑘 for all 𝑘 and all 𝑍 ∈ 𝔐.

Since there are only finitely many orbits, this is in turn equivalent to

dim (𝑍 ∩ 𝑥 ∩ supp (𝐻u�(𝔻𝐹))) ≤ −𝑘 ∀ 𝑥 ∈ 𝑋u�,gen, 𝑘 and 𝑍 ∈ 𝔐. (3.3)

We will show the equivalence for each fixed 𝑘 separately. Let us first show the implication
from (3.2) to (3.3). Since 𝐻u�(𝔻ℱ) is 𝐺-equivariant and there are only finitely many 𝐺-orbits,
it suffices to show (3.3) assuming that dim 𝑥 ≤ dim supp 𝐻u�(𝔻𝐹) and 𝑥 ∩ supp 𝐻u�(𝔻𝐹) ≠ ∅.
Then dim (𝑥 ∩ supp (𝐻u�(𝔻𝐹))) = dim 𝑥. Thus,

dim (𝑍 ∩ 𝑥 ∩ supp (𝐻u�(𝔻𝐹))) ≤ dim(𝑍 ∩ 𝑥) = 𝑝(𝑥) + dim 𝑥 =
𝑝(𝑥) + dim (𝑥 ∩ supp (𝐻u�(𝔻𝐹))) ≤ 𝑝(𝑥) − 𝑝(𝑥) − 𝑘 = −𝑘.

Conversely, assume that (3.3) holds for 𝑘. If 𝑥 ∩ supp 𝐻u�(𝔻𝐹) = ∅, then (3.2) is trivially
true. Otherwise choose a 𝑝-measuring 𝑍 that intersects supp 𝐻u�(𝔻𝐹). First assume that 𝑥 is
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3 measuring subvarieties

contained in supp 𝐻u�(𝔻𝐹). Then

dim (𝑥 ∩ supp (𝐻u�(𝔻𝐹))) = dim 𝑥 = −𝑝(𝑥) + dim(𝑍 ∩ 𝑥) =
− 𝑝(𝑥) + dim (𝑍 ∩ 𝑥 ∩ supp (𝐻u�(𝔻𝐹))) ≤ −𝑝(𝑥) − 𝑘.

Otherwise 𝑥 ∩ supp (𝐻u�(𝔻𝐹)) = 𝑦 for some 𝑦 ∈ 𝑋u�,gen with dim 𝑦 < dim 𝑥. Then (3.2) holds
for 𝑦 in place of 𝑥 and hence

dim (𝑥 ∩ supp (𝐻u�(𝔻𝐹))) = dim (𝑦 ∩ supp (𝐻u�(𝔻𝐹))) ≤ −𝑝(𝑦) − 𝑘 ≤ −𝑝(𝑥) − 𝑘

by monotonicity of 𝑝.

We now obtain the second part of the theorem by a duality argument from the first one.

Proof of Theorem 3.8(ii). Let ℱ ∈ u�𝐃≤0(𝑋)u�. By Lemma 2.5 this is equivalent to 𝔻ℱ ∈
u�𝐃≥0(𝑋)u�. By part (i) this is in turn equivalent to 𝜾∗

u�𝜄!
u�𝔻ℱ ∈ 𝐃≥0(𝒪u�) for all 𝑍 ∈ 𝔐 and 𝑧 ∈ 𝑍 .

The sheaf 𝜄!
u�𝔻ℱ = 𝔻𝜄∗

u�ℱ is coherent, so that the statement now follows from Lemma 2.1.

The following lemma encapsulates the central argument of the proof of the remaining part of
Theorem 3.8.

Lemma 3.9. Let ℱ ∈ 𝐃u�
coh(𝑋)u�,♡ be a 𝐺-equivariant coherent sheaf on 𝑋 (i.e. a complex

concentrated in degree 0), let 𝑝 be a monotone perversity and let 𝑛 be an integer. Assume that
𝑋 has enough 𝑝-measuring subvarieties and let 𝔐 be a 𝑝-measuring family of subvarieties of
𝑋. Then the following are equivalent:

(i) 𝑝(dim supp ℱ) ≥ 𝑛;

(ii) 𝐻 u�(Γu�ℱ) = 0 for all 𝑖 ≥ −𝑛 + 1 and all 𝑍 ∈ 𝔐.

Proof. Since supp ℱ is always a union of the closure of orbits, we can restrict to the support
and assume that supp ℱ = 𝑋.

First assume that 𝑝(dim 𝑋) = 𝑝(dim supp ℱ) ≥ 𝑛. Using a Mayer-Vietoris argument it suffices
to check condition (ii) in the case that 𝑋 is irreducible. By the definition of a 𝑝-measuring
subvariety and monotonicity of 𝑝, this implies that, up to radical, 𝑍 can be locally defined by at
most −𝑛 equations. Thus 𝐻 u�(Γu�ℱ) = 0 for 𝑖 > −𝑛 [bs, Theorem 3.3.1].

Now assume conversely that 𝐻 u�(Γu�ℱ) = 0 for all 𝑖 ≥ −𝑛 + 1 and all measuring subvarieties
𝑍 ∈ 𝔐. We have to show that 𝑝(dim 𝑋) ≥ 𝑛. Set 𝑑 = dim 𝑋. Choose any 𝑝-measuring subvariety
𝑍 ∈ 𝔐 that intersects a maximal component of 𝑋 non-trivially. Then codimu� 𝑍 = −𝑝(𝑑). We
will show that 𝐻−u�(u�)(Γu�ℱ) ≠ 0 and hence 𝑝(𝑑) ≥ 𝑛 by assumption. Take some affine open
subset 𝑈 of 𝑋 such that 𝑈 ∩ 𝑍 is non-empty, irreducible and of codimension −𝑝(𝑑) in 𝑈. It
suffices to show that the cohomology is non-zero in 𝑈. Thus we can assume without loss of
generality that 𝑋 is affine, say 𝑋 = Spec 𝐴, and 𝑍 is irreducible. Write 𝑍 = 𝑉(𝔭) for some prime
ideal 𝔭 of 𝐴. By flat base change [bs, Theorem 4.3.2],

Γ(𝑋, 𝐻−u�(u�)(Γu�ℱ))𝔭 = (𝐻−u�(u�)
𝔭 (Γ(𝑋, ℱ)))

𝔭
= 𝐻−u�(u�)

𝔭𝔭 (Γ(𝑋, ℱ)𝔭)
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3.3 Existence of strong measuring subvarieties

Since dim supp ℱ = dim 𝑋 = 𝑑, the dimension of the 𝐴𝔭-module Γ(𝑋, ℱ)𝔭 is −𝑝(𝑑). Thus by
the Grothendieck non-vanishing theorem [bs, Theorem 6.1.4] 𝐻−u�(u�)

𝔭𝔭 (Γ(𝑋, ℱ)𝔭) ≠ 0 and hence
Γ(𝑋, 𝐻−u�(u�)(Γu�ℱ)) ≠ 0 as required.

Proof of Theorem 3.8(iii). We use the description of u�𝐃≤0(𝑋)u� given by Proposition 3.2, i.e.

u�𝐃≤0(𝑋)u� = {ℱ ∈ 𝐃u�
coh(𝑋)u� ∶ 𝑝 (dim (supp 𝐻u�(ℱ))) ≥ 𝑛 for all 𝑛} .

We induct on the largest 𝑘 such that 𝐻u�(ℱ) ≠ 0 to show that ℱ ∈ u�𝐃≤0(𝑋)u� if and only if
Γu�ℱ ∈ 𝐃≤0(𝑋) for all 𝑝-measuring subvarieties 𝑍 ∈ 𝔐.

The equivalence is trivial for 𝑘 ≪ 0. For the induction step note that there is a distinguished
triangle

𝜏<u�ℱ → ℱ → 𝐻u�(ℱ)[−𝑘] +1−−−→ .

Applying the functor Γu� and taking cohomology we obtain an exact sequence

⋯ → 𝐻1(Γu�(𝜏<u�ℱ)) → 𝐻1(Γu�ℱ) → 𝐻u�+1(Γu�(𝐻u�(ℱ))) →
𝐻2(Γu�(𝜏<u�ℱ)) → 𝐻2(Γu�ℱ) → 𝐻u�+2(Γu�(𝐻u�(ℱ))) → ⋯ .

By induction, 𝐻 u�(Γu�(𝜏<u�ℱ)) vanishes for 𝑗 ≥ 1 so that 𝐻 u�(Γu�ℱ) ≅ 𝐻u�+u�(Γu�(𝐻u�(ℱ))) for
𝑗 ≥ 1. Thus the statement follows from Lemma 3.9.

3.3. existence of strong measuring subvarieties

Of course, for Theorem 3.8 to have any content, one needs to show that 𝑋 has enough
𝑝-measuring subvarieties. The next theorem shows that at least for affine varieties there are
always enough measuring subvarieties whenever 𝑝 satisfies the obvious conditions (see Re-
mark 3.7).

Theorem 3.10. Assume that 𝑋 is affine and the perversity 𝑝 is monotone and comonotone
and satisfies −𝑛 ≤ 𝑝(𝑛) ≤ 0 for 𝑛 ∈ {0, … , dim 𝑋}. Then 𝑋 has enough strong 𝑝-measuring
subvarieties.

Proof. Let 𝑋 = Spec 𝐴. We induct on the dimension 𝑑. More precisely, we induct on the
following statement:

There exists a closed subvariety 𝑍u� of 𝑋 such that for all 𝑥 ∈ 𝑋u�,gen the following
holds:

• 𝑍u� ∩ 𝑥 ≠ ∅ and 𝑍u� ∩ 𝑥 is a set-theoretic local complete intersection in 𝑥;
• if dim 𝑥 ≤ 𝑑, then dim(𝑥 ∩ 𝑍u�) = 𝑝(𝑥) + dim 𝑥;
• if dim 𝑥 > 𝑑, then dim(𝑥 ∩ 𝑍u�) = 𝑝(𝑑) + dim 𝑥.

17



3 measuring subvarieties

We set 𝑝(−1) = 0. The statement is trivially true for 𝑑 = −1, e.g. take 𝑍 = 𝑋. Assume that the
statement is true for some 𝑑 ≥ −1. We want to show it for 𝑑 + 1 ≤ dim 𝑋.

If 𝑝(𝑑) = 𝑝(𝑑+1), then 𝑍u�+1 = 𝑍u� works. Otherwise, by (co)monotonicity, 𝑝(𝑑+1) = 𝑝(𝑑)−1.
Set 𝑆 = ⋃{𝑥 ∈ 𝑋u�,gen ∶ dim 𝑥 ≤ 𝑑}. Since there are only finitely many orbits, we can choose a
function 𝑓 such that 𝑓 vanishes identically on 𝑆, 𝑉(𝑓 ) does not share a component with 𝑍u� and
𝑉(𝑓 ) intersects every 𝑥 with dim 𝑥 > 𝑑. Then 𝑍u�+1 = 𝑍u� ∩ 𝑉(𝑓 ) satisfies the conditions.

18



II

Hochschild cohomology of
D-modules on torus quotient stacks



4

prerequisites

We fix an algebraically closed base field 𝑘 of characteristic 0. All stacks in this thesis are
assumed to be algebraic QCA stacks over 𝑘. As we will summarize in Section 4.1, the QCA
condition ensures that the category of D-modules on stacks is well-behaved. In particular for
any stack 𝐗 we have:

• The diagonal morphism Δ∶ 𝐗 → 𝐗 × 𝐗 is schematic.

• There exists a scheme 𝑍 with a smooth and surjective map 𝑍 → 𝐗.

• 𝐗 is quasi-compact.

• The automorphism groups of the geometric points of 𝐗 are affine.

• The loop space (or inertia stack) 𝓛𝐗 = 𝐗 ×𝐗×𝐗 𝐗 is of finite presentation over 𝐗.

The first two conditions ensure that the stack is algebraic, the other three that it is quasi-compact
with affine automorphism group (QCA). For details on QCA stacks we refer to [dg1]. Every
quotient of a scheme of finite type over 𝑘 by an affine algebraic group is a QCA stack, and we
will be mainly interested in these.

In order to correctly define categories of D-modules on stacks it is necessary to work with
dg-categories. We refer to [k2] for an introduction to dg categories. It is often convenient to
regard (pretriangulated) dg categories as 𝑘-linear stable (∞, 1)-categories [l1; l2], which can
be done via the nerve construction [c; f]. We will switch between those two languages without
explicitly mentioning the intervening constructions and apply results from [l2] to dg categories.
Fortunately, a superficial knowledge of dg/∞-categories should be sufficient for reading this
thesis.

4.1. d-modules on stacks

We will be primarily concerned with D-modules on (quotient) stacks. Unfortunately there is
currently no comprehensive text available that covers all the basic constructions and properties
of D-modules on stacks (or even the dg category of D-modules on schemes). Thus we collect
all the relevant properties (without proof) in this section. The upshot is that the familiar “six



4.1 D-modules on stacks

functors formalism” essentially works for holonomic D-modules and schematic morphisms of
stacks.

The category of D-modules on a stack 𝐗 can be either constructed via descent [bd; dg1]
or equivalently as ind-coherent sheaves on the de Rham space of 𝐗 [gr2]. While the first
construction is more “hands on”, the second construction is often more useful from a theoretical
point of view. It is explained in detail in the upcoming book [gr1] (see also [fg] for an overview).
Many basic properties of the category 𝐃𝐌𝐨𝐝(𝐗) are explored in [dg1] and most of the following
assertions are taken from there.

For any morphism 𝑓 ∶ 𝐗 → 𝐘 the constructions yield a continuous functor 𝑓 ! ∶ 𝐃𝐌𝐨𝐝(𝐘) →
𝐃𝐌𝐨𝐝(𝐗) and (after some work) a not necessarily continuous functor 𝑓∗ ∶ 𝐃𝐌𝐨𝐝(𝐗) →
𝐃𝐌𝐨𝐝(𝐘). If 𝑝∶ 𝐗 → pt is the structure map then we set

ΓdR(𝐗, −) = 𝑝∗(−) ∶ 𝐃𝐌𝐨𝐝(𝐗) → 𝐕𝐞𝐜𝐭.

The functor ΓdR is representable by a D-module 𝑘𝐗, i.e.

ΓdR(𝐗, −) = Hom𝐃𝐌𝐨𝐝(𝐗)(𝑘𝐗, −).

Again we note that ΓdR(𝐗, −) is usually not continuous and hence the object 𝑘𝐗 not compact.
Let Δ∶ 𝐗 → 𝐗 × 𝐗 be the diagonal. The category 𝐃𝐌𝐨𝐝(𝐗) has a monoidal structure given

by the tensor product
ℱ ⊗ 𝒢 = Δ!(ℱ ⊠ 𝒢).

The unit for this monoidal structure is 𝜔𝐗 = 𝑝!𝑘.
We will be mainly concerned with the subcategory of holonomic D-modules since they enjoy

extended functoriality.

Definition 4.1. A 𝐷-module ℱ ∈ 𝐃𝐌𝐨𝐝(𝐗) is called holonomic if 𝑓 !ℱ is holonomic for any
smooth morphism 𝑓 ∶ 𝑍 → 𝐗 from a scheme 𝑍 . The full subcategory of holonomic D-modules
will be denoted 𝐃𝐌𝐨𝐝hol(𝐗).

The following assertions mostly follow from their corresponding counterparts for schemes.
We refer to [b4] for proofs in the case of non-smooth schemes.

Proposition 4.2. Let 𝑓 ∶ 𝐗 → 𝐘 be a schematic morphism. Then 𝑓 ! and 𝑓∗ restrict to functors

𝑓 ! ∶ 𝐃𝐌𝐨𝐝hol(𝐘) → 𝐃𝐌𝐨𝐝hol(𝐗) and 𝑓∗ ∶ 𝐃𝐌𝐨𝐝hol(𝐗) → 𝐃𝐌𝐨𝐝hol(𝐘).

The Verdier duality functor on schemes induces an involutive anti auto-equivalence

𝔻𝐗 ∶ 𝐃𝐌𝐨𝐝hol(𝐗)op → 𝐃𝐌𝐨𝐝hol(𝐗)

such that for each smooth morphism 𝑍 → 𝐗 of relative dimension 𝑑 from a scheme 𝑍 one has

𝑓 ! ∘ 𝔻𝐗 ≅ 𝔻u� ∘ 𝑓 ![−2𝑑].
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4 prerequisites

The Verdier duality functor then allows us to define the non-standard functors 𝑓! and 𝑓 ∗ for any
schematic morphism 𝑓 ∶ 𝐗 → 𝐘 by

𝑓 ∗ = 𝔻𝐗 ∘ 𝑓 ! ∘ 𝔻𝐘 ∶ 𝐃𝐌𝐨𝐝hol(𝐘) → 𝐃𝐌𝐨𝐝hol(𝐗)

and

𝑓! = 𝔻𝐘 ∘ 𝑓∗ ∘ 𝔻𝐗 ∶ 𝐃𝐌𝐨𝐝hol(𝐗) → 𝐃𝐌𝐨𝐝hol(𝐘).

We obtain adjoint pairs (𝑓!, 𝑓 !) and (𝑓 ∗, 𝑓∗). In some situations we can identify the non-standard
functors with their standard counterparts. If 𝑓 is smooth of relative dimension 𝑑 then 𝑓 ∗ =
𝑓 ![−2𝑑]. If 𝑓 is proper then 𝑓! = 𝑓∗ and in particular 𝑓∗ is left adjoint to 𝑓 !. The objects 𝜔𝐗 and
𝑘𝐗 are always holonomic and

𝔻𝐗𝜔𝐗 = 𝑘𝐗.

We have 𝑘𝐗 = 𝑓 ∗𝑘𝐘 and if 𝐗 is smooth, then 𝑘𝐗 = 𝜔𝐗[−2 dim 𝐗].
We will make use of the following lemma which follows from [dg1, Lemma 5.1.6].

Lemma 4.3. For a smooth and schematic morphism 𝑓 the functor 𝑓 ! is conservative.

Proposition 4.4 ([gr1, iii.4.2.1.3]). Consider a Cartesian square

𝐙 𝐗1

𝐗2 𝐘

u�

u�

u�
u�

with schematic morphism 𝑓 (and hence 𝑝). Then there is a base change isomorphism

𝑝∗𝑞! ∼−−→ 𝑔!𝑓∗

of functors from 𝐃𝐌𝐨𝐝(𝐗𝟏) to 𝐃𝐌𝐨𝐝(𝐗𝟐). If furthermore 𝑓 (and hence 𝑝) is proper, then this
isomorphism coincides with the natural transformation

𝑝∗𝑞! → 𝑝∗𝑞!𝑓 !𝑓∗ = 𝑝∗𝑝!𝑔!𝑓∗ → 𝑔!𝑓∗

induced by (𝑓∗, 𝑓 !) and (𝑝∗, 𝑝!) adjunctions.

Proposition 4.5. If 𝑓 ∶ 𝐗 → 𝐘 is a schematic morphism then the projection formula holds,
i.e. there is a functorial isomorphism

ℱ ⊗ 𝑓∗(𝒢) ≅ 𝑓∗(𝑓 !ℱ ⊗ 𝒢)

for ℱ ∈ 𝐃𝐌𝐨𝐝(𝐘) and 𝒢 ∈ 𝐃𝐌𝐨𝐝(𝐗).
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4.2 Monads

Remark 4.6. Propositions 4.4 and 4.5 hold more generally when 𝑓 is merely a “safe” morphism.
Alternatively they hold in full generality after replacing 𝑓∗ by the “renormalized de Rham
pushforward”. We fill not use either notion in this thesis and refer the interested reader to [dg1].

For D-modules on stacks we have the usual recollement package. Let 𝑖 ∶ 𝐙 ↪ 𝐗 be a closed
embedding and 𝑗 ∶ 𝐔 ↪ 𝐗 the complementary open. We have adjoint pairs (𝑖∗, 𝑖!) and (𝑗!, 𝑗∗).

Proposition 4.7 ([gr2, Section 2.5]). There is an exact triangle of functors

𝑖∗𝑖! → Id → 𝑗∗𝑗!

on 𝐃𝐌𝐨𝐝(𝐗), the adjunction morphisms

Id → 𝑖!𝑖∗ and 𝑗!𝑗∗ → Id

are isomorphisms, the functors 𝑗!𝑖∗ and 𝑖!𝑗∗ vanish and 𝑖∗ and 𝑗∗ are full embeddings.

On holonomic D-modules we have the additional adjoint pairs (𝑖∗, 𝑖∗) and (𝑗!, 𝑗∗). By
applying duality to Proposition 4.7 we obtain the distinguished triangle

𝑗!𝑗∗ → Id → 𝑖∗𝑖∗

and the identity 𝑖∗𝑗! = 0 on holonomic D-modules. Further, the functor 𝑗! is a full embedding
𝐃𝐌𝐨𝐝hol(𝐔) ↪ 𝐃𝐌𝐨𝐝hol(𝐗).

It is often useful to consider the pullback of a D-module on 𝐗 to a smooth cover.

Definition 4.8. Let 𝑋 be a scheme with an action of an algebraic group 𝐺 and let 𝑝∶ 𝑋 → 𝑋/𝐺
be the quotient map. The monodromic subcategory 𝐃𝐌𝐨𝐝(𝑋)u�−mon ⊆ 𝐃𝐌𝐨𝐝(𝑋) is the full
subcategory generated by the essential image of 𝑝! ∶ 𝐃𝐌𝐨𝐝(𝑋/𝐺) → 𝐃𝐌𝐨𝐝(𝑋) (or equivalently
by the essential image of 𝑝∗).

Theorem 4.9 (Contraction principle [dg2, Proposition 3.2.2]). Let 𝑋 be a scheme with an
action by 𝔾u� that extends to an action of the monoid 𝔸1. Let 𝑖 ∶ 𝑋0 ↪ 𝑋 be the closed
subscheme of 𝔾u�-fixed points and let 𝜋∶ 𝑋 → 𝑋0 be the contraction morphism induced by
the 𝔾u�-equivariant morphism 𝔸1 → {0}. Then there is an isomorphism of functors

𝑖∗ ≅ 𝜋∗ ∶ 𝐃𝐌𝐨𝐝(𝑋)𝔾u�−mon → 𝐃𝐌𝐨𝐝(𝑋0).

4.2. monads

We will deduce Theorem 1.2 from a isomorphism of monads on 𝐃𝐌𝐨𝐝(𝐗). In this section
we give a short introduction to the theory of monads and the specific constructions that we
will use. However, in the interest of readability we will mainly do so informally, skipping
over the intricacies of ∞-categories. The interested reader can find the correct ∞-categorical
formulations in the given references.
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4 prerequisites

Thus we think of a monad on a category 𝐂 as consisting of a triple (𝑇, 𝜂, 𝜇), where 𝑇 ∶ 𝐂 → 𝐂
is an endofunctor of 𝐂, and 𝜂∶ Id𝐂 → 𝑇 and 𝜇∶ 𝑇 ∘ 𝑇 → 𝑇 are natural transformations such
that the diagrams

𝑇3 𝑇2

𝑇2 𝑇

u�u�

u�u� u�

u�

and
𝑇 𝑇2

𝑇2 𝑇

u�u�

u�u� u�

u�

(4.1)

commute. Alternatively, we can think of 𝑇 being a monoid in the category of endofunctors of
𝐂 with the monoidal structure given by composition of endofunctors. This definition also gives
the correct generalization to ∞-categories [l2, Definition 4.7.0.1].

Let 𝑋 be an object of the category 𝐂. Then 𝑇 gives the vector space Hom𝐂(𝑋, 𝑇𝑋) the
structure of a dg algebra with multiplication map

(𝑓 , 𝑔) ↦ 𝜇u� ∘ 𝑇𝑓 ∘ 𝑔,

𝑋 𝑇𝑋 𝑇2𝑋 𝑇𝑋.u� u�u� u�u�

The identities 4.1 ensure that the algebra is associative and unital.
The most common source of monads is from a pair of adjoint functors 𝐹 ∶ 𝐂 ⇄ 𝐃 ∶𝐺. One

simply sets 𝑇 = 𝐺 ∘ 𝐹 and 𝜂 and 𝜇 are given by the adjunction morphisms

Id𝐂 → 𝐺 ∘ 𝐹 = 𝑇 and 𝑇2 = 𝐺 ∘ (𝐹 ∘ 𝐺) ∘ 𝐹 → 𝐺 ∘ 𝐹 = 𝑇.

We note that the correct construction in more complicated in the ∞-categorical case and refer
to [l2, Section 4.7]. For any 𝑋 ∈ 𝐂 the algebra construction above gives an isomorphism of
algebras

Hom𝐂(𝑋, (𝐺𝐹)(𝑋)) ≅ Hom𝐃(𝐹𝑋, 𝐹𝑋).

Another common way to obtain monads in geometry is via a groupoid. Recall that a groupoid
𝐺• in stacks consists of a stack 𝐆0 of “objects” and a stack 𝐆1 of “morphisms” together with

• source and target maps 𝑠, 𝑡 ∶ 𝐆1 ⇉ 𝐆0,

• a unit 𝑒 ∶ 𝐺0 → 𝐺1,

• a multiplication (or composition) map 𝑚∶ 𝐆1 ×
u�,𝐆0,u�

𝐆1 → 𝐆1,

• an inverse map 𝜄 ∶ 𝐆1 → 𝐆1,

such that

• 𝑠 ∘ 𝑒 = 𝑡 ∘ 𝑒 = Id𝐆0
,

• 𝑠 ∘ 𝑚 = 𝑠 ∘ 𝑝2 and 𝑡 ∘ 𝑚 = 𝑡 ∘ 𝑝1 (where 𝑝u� ∶ 𝐆1 ×u�,𝐆0,u� 𝐆1 are the projection maps).
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4.2 Monads

• 𝑚 is associative,

• 𝜄 interchanges 𝑠 and 𝑡 and is an inverse for 𝑚,

where all identities have to be understood in the correct ∞-categorical way [l1, Section 6.1.2].

Example 4.10. For our purpose the most important example is the following: Let 𝑓 ∶ 𝐗 → 𝐒 be
a morphism of stacks. We set 𝐆0 = 𝐗 and 𝐆1 = 𝐗 ×𝐒 𝐗. The source and target maps are given
by 𝑝1 and 𝑝2, the unit by the diagonal Δ∶ 𝐗 → 𝐗 ×𝐒 𝐗, the inverse by interchanging the factors
and multiplication is 𝑝13 ∶ 𝐗 ×𝐒 𝐗 ×𝐒 𝐗 → 𝐗 ×𝐒 𝐗. ◯

Let us for the moment assume that 𝑠 (and hence 𝑡) is proper and schematic. In this case the
maps 𝑒 and 𝑚 are also proper, since 𝑠 ∘ 𝑒 = Id𝐆0

and 𝑠 ∘ 𝑚 = 𝑠 ∘ 𝑝2 are proper. In particular the
functors 𝑒! ∶ 𝐃𝐌𝐨𝐝(𝐆1) → 𝐃𝐌𝐨𝐝(𝐆0) and 𝑚! ∶ 𝐃𝐌𝐨𝐝(𝐆1) → 𝐃𝐌𝐨𝐝(𝐆1 ×𝐆0

𝐆1) have left
adjoints given by 𝑒∗ and 𝑚∗ respectively. This allows us to give the endofunctor 𝑇 = 𝑠∗𝑡! of
𝐃𝐌𝐨𝐝(𝐆0) the structure of a monad in the following way:

• By (𝑒∗, 𝑒!)-adjunction we have a transformation

Id = (𝑠 ∘ 𝑒)∗(𝑡 ∘ 𝑒)! = 𝑠∗𝑒∗𝑒!𝑡! → 𝑠∗𝑡! = 𝑇.

• Consider the following commutative diagram

𝐆1

𝐆1 ×𝐆0
𝐆1

𝐆1 𝐆1

𝐆0 𝐆0 𝐆0

u�
u�

u�

u�2

u�1

u�
u�

u�
u�

with Cartesian middle square. Proper base change and (𝑚∗, 𝑚!)-adjunction gives a
transformation

𝑇2 = 𝑠∗𝑡!𝑠∗𝑡! = (𝑠 ∘ 𝑝2)∗(𝑡 ∘ 𝑝1)! = (𝑠 ∘ 𝑚)∗(𝑡 ∘ 𝑚)! = 𝑠∗𝑚∗𝑚!𝑡! → 𝑠∗𝑡! = 𝑇.

In the non-∞-categorical setting one could easily check by hand that this is indeed a monad.
To obtain the corresponding derived statement one applies an argument similar to [gr1, Sec-
tion ii.1.7.2]. We will discuss a version of this below.
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Let now 𝑓 ∶ 𝐗 → 𝐘 be schematic and proper. The Cartesian diagram

𝐗 ×𝐘 𝐗 𝐗

𝐗 𝐘

u�u�

u�u� u�

u�

induces a groupoid with 𝐆0 = 𝐗 and 𝐆1 = 𝐗 ×𝐘 𝐗. The above constructions now give two
monads on 𝐃𝐌𝐨𝐝(𝐗): one by (𝑓∗, 𝑓 !) adjunction and one from the groupoid structure. The
base change isomorphism

𝑝u�,∗𝑝!
u� → 𝑓 !𝑓∗

gives an identification of these monads and hence of the algebras that they induce, i.e. for any
ℱ ∈ 𝐃𝐌𝐨𝐝(𝐗) we have

Hom(ℱ, 𝑝u�,∗𝑝!
u�ℱ) ≅ Hom(ℱ, 𝑓 !𝑓∗ℱ) ≅ Hom(𝑓∗ℱ, 𝑓∗ℱ).

We will need to apply this construction for non-proper 𝑓 . Unfortunately, in this case none
of the adjunctions used to define the monads are available. We rectify this by restricting to
the full subcategory of of holonomic D-modules and using the !-pushforward functors instead
of the ∗-pushforward ones. Of course, by doing so we do not automatically have base change
isomorphisms available anymore. Thus we have to explicitly require that all necessary base
changes hold (this is usually called the Beck-Chevalley condition).

In order to formulate the condition, we need the concept of the nerve of a groupoid. This is
the simplicial stack, also denoted 𝐆•, with

𝐆u� = 𝐆1 ×𝐆0
⋯ ×𝐆0

𝐆1⏟⏟⏟⏟⏟⏟⏟⏟⏟
u� factors

.

We refer to [l1, Section 6.1.2] for the correct ∞-categorical setup. The following lemma is now
an immediate corollary of [gr1, Lemma ii.1.7.1.4] or [l2, Theorem 4.7.6.2].
Lemma 4.11. Let 𝑓 ∶ 𝐗 → 𝐘 be a schematic morphism of stacks and let 𝐆• be the corresponding
groupoid. For each map 𝐹 ∶ [𝑛] → [𝑚] in 𝚫op consider the corresponding square

𝐆u�+1 𝐆u�

𝐆u�+1 𝐆u�

u�u�

u�u�+1 u�u�

u�u�

where the vertical arrows are induced by 𝐹. Assume that for each such square the base change
composition

𝑝u�+1,!𝑝!
u� → 𝑝u�+1,!𝑝!

u�𝑝!
u�𝑝u�,! = 𝑝u�+1,!𝑝!

u�+1𝑝!
u�𝑝u�,! → 𝑝!

u�𝑝u�,!

given by the adjunction morphisms is an isomorphism of functors 𝐃𝐌𝐨𝐝hol(𝐆u�) → 𝐃𝐌𝐨𝐝hol(𝐆u�+1).
Then the endofunctor 𝑝u�,!𝑝!

u� of 𝐃𝐌𝐨𝐝hol(𝐗) has a canonical structure of a monad and as such
is isomorphic to the adjunction monad 𝑓 !𝑓!.
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4.3 Hochschild cohomology

4.3. hochschild cohomology

We recall that the Hochschild cohomology of a dg category 𝐂 is the algebra of derived endo-
morphisms of the identity functor,

HH•(𝐂) = ℝHom(Id𝐂, Id𝐂).

For the exact definition of the category ℝHom = 𝐅𝐮𝐧𝐜𝐭(𝐂, 𝐂) we refer to [k2]. Instead we
will give a more concrete construction via kernels which can be applied to 𝐃𝐌𝐨𝐝(𝐗). For
this let us restrict to the case of co-complete dg categories and let 𝐅𝐮𝐧𝐜𝐭cont(𝐂, 𝐂) be the full
subcategory of 𝐅𝐮𝐧𝐜𝐭(𝐂, 𝐂) spanned by the continuous functors. Then, since Id𝐂 is evidently
continuous, we have

HH•(𝐂) = Hom𝐅𝐮𝐧𝐜𝐭cont(𝐂,𝐂)(Id𝐂, Id𝐂).
Let us further assume that 𝐂 is dualizable with dual 𝐂∨. Thus there is a unit map

𝜂∶ 𝐕𝐞𝐜𝐭 → 𝐂∨ ⊗ 𝐂

and a counit map
𝜀∶ 𝐂∨ ⊗ 𝐂 → 𝐕𝐞𝐜𝐭

fulfilling the usual compatibilities (cf. [bn, Section 2]). Let 𝑢 = 𝜂(𝑘). Then to each continuous
endofunctor 𝐹 of 𝐂 we can associate its kernel Id𝐂∨ ⊗ 𝐹(𝑢) ∈ 𝐂∨ ⊗ 𝐂 and conversely to each
kernel 𝑄 ∈ 𝐂∨ ⊗ 𝐂 we can associate the endofunctor

𝐂
Id𝐂⊗u�

−−−−−−→ 𝐂 ⊗ 𝐂∨ ⊗ 𝐂
u�⊗Id𝐂−−−−−−→ 𝐂.

These assignments are mutually inverse and give an equivalence of dg categories

𝐅𝐮𝐧𝐜𝐭cont(𝐂, 𝐂) ≅ 𝐂∨ ⊗ 𝐂.

In particular, the kernel for the identity is 𝑢 and hence we have

HH•(𝐂) = Hom𝐂∨⊗𝐂(𝑢, 𝑢).

Let us now consider the case of 𝐂 = 𝐃𝐌𝐨𝐝(𝐗) for a stack 𝑋. Let 𝑝∶ 𝐗 → pt be the structure
morphism and Δ∶ 𝐗 → 𝐗 × 𝐗 the diagonal. By [dg1, Section 8.4] the category 𝐃𝐌𝐨𝐝(𝐗) is
dualizable and there is a canonical indentification

𝐃𝐌𝐨𝐝(𝐗)∨ ⊗ 𝐃𝐌𝐨𝐝(𝐗) ≅ 𝐃𝐌𝐨𝐝(𝐗 × 𝐗)

such that the unit map is given by Δ∗𝑝! and thus we have

𝑢 = Δ∗𝜔𝐗.

We summarize the above discussion in the following lemma.
Lemma 4.12. Let 𝐗 be a stack. Then the Hochschild cohomology of 𝐃𝐌𝐨𝐝(𝐗) is given by
the dg algebra

HH•(𝐃𝐌𝐨𝐝(𝐗)) = Hom𝐃𝐌𝐨𝐝(𝐗×𝐗)(Δ∗𝜔𝐗, Δ∗𝜔𝐗).
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5

base change for non-proper maps

Let 𝐗 be any stack, where we recall that all stacks are assumed to be QCA. We are interested in
computing the Hochschild cohomology

HH•(𝐃𝐌𝐨𝐝(𝐗)).

Let Δ∶ 𝐗 → 𝐗 × 𝐗 is the diagonal map, which by assumption is schematic. The dualizing
module 𝜔𝐗 is always holonomic. Thus we have 𝔻Δ∗𝜔𝐗 = Δ!𝑘𝐗. With this we observe that

HH•(𝐃𝐌𝐨𝐝(𝐗)) = Hom𝐃𝐌𝐨𝐝(𝐗×𝐗)(Δ∗𝜔𝐗, Δ∗𝜔𝐗) (Lemma 4.12)
= Hom𝐃𝐌𝐨𝐝(𝐗×𝐗)(Δ!𝑘𝐗, Δ!𝑘𝐗)op (duality)
= Hom𝐃𝐌𝐨𝐝(𝐗×𝐗)(𝑘𝐗, Δ!Δ!𝑘𝐗)op (adjunction)
= ΓdR(𝐗, Δ!Δ!𝑘𝐗)op,

where the algebra structure on ΓdR(𝐗, Δ!Δ!𝑘𝐗) = Hom𝐃𝐌𝐨𝐝(𝐗×𝐗)(𝑘𝐗, Δ!Δ!𝑘𝐗) is the one
induced by the (Δ!, Δ!)-adjunction monad. Consider the Cartesian square

𝓛𝐗 𝐗

𝐗 𝐗 × 𝐗

u�1

u�2 Δ

Δ

Let us assume for the moment that Δ (and hence 𝑝u�) was proper. Then Δ∗ = Δ! and 𝑝2,∗ = 𝑝2,!
and by Section 4.2 we have an isomorphism of monads

𝑝2,!𝑝!
1 → Δ!Δ!, (5.1)

which induces an isomorphism of algebras

ΓdR(𝐗, 𝑝2,!𝑝!
1𝑘𝐗) → ΓdR(𝐗, Δ!Δ!𝑘𝐗).

Of course, if 𝑋 is not an algebraic space, then Δ is not proper (nor is it in general smooth). Thus
in general (5.1) is not an isomorphism and there is no canonical structure of monad on 𝑝2,!𝑝!

1.
We would like to apply Lemma 4.11 to construct a monad in special cases. Thus the goal of this
chapter is to give a criterion for the assumptions of Lemma 4.11, i.e. for base change to hold.



5.1 A lemma on base change

Example 5.1. The base change morphism (5.1) is also an isomorphism if Δ is smooth. In
particular this implies that the “naive expectation” holds for 𝐗 = 𝐁𝐺 for any algebraic group 𝐺,
i.e. we have

HH•(𝐃𝐌𝐨𝐝(𝐁𝐺)) = ΓdR(𝐁𝐺, 𝑝2,!𝑝!
1𝑘𝐁u�)op.

An argument similar to [b1] shows that there is a further isomorphism

ΓdR(𝐁𝐺, 𝑝2,!𝑝!
1𝑘𝐗) ≅ ΓdR(𝐺, 𝑘u�)∨ ⊗ ΓdR(𝐁𝐺, 𝑘𝐁u�).

Alternatively, we can use the identification

𝐃𝐌𝐨𝐝(𝐁𝐺) ≅ ΓdR(𝐺, 𝑘u�)∨-𝐌𝐨𝐝,

where the algebra structure on ΓdR(𝐺, 𝑘u�)∨ is induced by the group multiplication [dg1, Sec-
tion 7.2]. If 𝐺 is reductive, then ΓdR(𝐺, 𝑘u�)∨ is an exterior algebra and thus its Hochschild
cohomology can be computed directly. ◯

5.1. a lemma on base change

Consider a Cartesian diagram of stacks

𝐙 𝐗1

𝐗2 𝐘

u�

u�

u�
u�

with 𝑓 and 𝑔 schematic. We have a morphism of functors 𝐃𝐌𝐨𝐝hol(𝐗1) → 𝐃𝐌𝐨𝐝hol(𝐗2),

𝑝!𝑞! → 𝑔!𝑓! (5.2)

induced by adjunctions
𝑝!𝑞! → 𝑝!𝑞!𝑓 !𝑓! = 𝑝!𝑝!𝑔!𝑓! → 𝑔!𝑓!. (5.3)

If 𝑓 is proper, then (5.2) is an isomorphism by Proposition 4.4. To understand the behavior for
non-proper 𝑓 , we will approximate it by a proper morphism.

Definition 5.2. A relative compactification of a morphism 𝑓 ∶ 𝐗 → 𝐘 is a commutative diagram

𝐗 𝐗

𝐘

u�

u�
u�

where 𝑗 is an open embedding and 𝑓 is proper.
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5 base change for non-proper maps

Example 5.3. A famous example of such a relative compactification is Drinfeld’s compactifica-
tion of the morphism Bunu� → Bunu�, where Bunu� is the stack of 𝐺-bundles on a curve 𝐶 with
𝐺 reductive and 𝐵 is a Borel subgroup of 𝐺 [bg]. ◯

Let us assume that in the above situation there exists a relative compactification of 𝑓 ∶ 𝐗1 →
𝐘. Let 𝐗u�

1 be the closed complement of the open inclusion 𝑗 ∶ 𝐗1 ↪ 𝐗1. Similarly, we let
𝐙 = 𝐗2 ×𝐘 𝐗1 and 𝐙u� = 𝐗2 ×𝐘 𝐗u�

1. The notation for the corresponding inclusion and projection
maps is summarized in the following Cartesian diagrams.

𝐙 𝐗1

𝐗2 𝐘

u�

u�

u�
u�

𝐙u� 𝐙

𝐗u�
1 𝐗1

u�

u�

We note that 𝐙 is the disjoint union of the closed substack 𝐙u� and the open substack 𝐙.

Lemma 5.4. The cone of the morphism (5.2) is

𝑝!𝑖∗𝑖∗𝑞!𝑗!.

In particular, if 𝑖∗𝑞!𝑗! = 0, then (5.2) is an isomorphism of functors.

Proof. Let ̃𝚥 ∶ 𝐙 ↪ 𝐙 be the open inclusion complement to 𝑖. We split the adjunction in (5.3) in
two by using the compositions

𝑓 = 𝑓 ∘ 𝑗, 𝑝 = 𝑝 ∘ ̃𝚥 and 𝑞 = 𝑞 ∘ ̃𝚥.

Thus the adjunction 𝑝!𝑞! → 𝑝!𝑞!𝑓 !𝑓! becomes the sequence

𝑝!𝑞! → 𝑝!𝑞!𝑗!𝑗! → 𝑝!𝑞!𝑗!𝑓 !𝑓 !𝑗!.

The equality 𝑝!𝑞!𝑓 !𝑓! = 𝑝!𝑝!𝑔!𝑓! then becomes

𝑝!𝑞!𝑗!𝑓 !𝑓 !𝑗! = 𝑝! ̃𝚥!𝑞!𝑓 !𝑓 !𝑗! = 𝑝! ̃𝚥!𝑝!𝑔!𝑓 !𝑗!.

Finally the adjunction 𝑝!𝑝!𝑔!𝑓! → 𝑔!𝑓! becomes

𝑝! ̃𝚥!𝑝!𝑔!𝑓 !𝑗! = 𝑝! ̃𝚥! ̃𝚥!𝑝!𝑔!𝑓 !𝑗! → 𝑝!𝑝
!𝑔!𝑓 !𝑗! → 𝑔!𝑓 !𝑗! = 𝑔!𝑓!.

Let us apply the same adjunction morphisms in a different order. First the inclusions

𝑝!𝑞! u�−−→ 𝑝!𝑞!𝑗!𝑗! = 𝑝! ̃𝚥! ̃𝚥!𝑞!𝑗!
u�

−−→ 𝑝!𝑞
!𝑗!,

and then the actual base change

𝑝!𝑞
!𝑗! → 𝑝!𝑞

!𝑓 !𝑓 !𝑗! = 𝑝!𝑝
!𝑔!𝑓 !𝑗! → 𝑔!𝑓 !𝑗! = 𝑔!𝑓!. (5.4)
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5.2 Relative compactification for quotient stacks

We note that the adjunction 𝛼∶ Id → 𝑗!𝑗! is an isomorphism and the composition of the maps in
(5.4) is exactly the isomorphism of proper base change (cf. Proposition 4.4). Thus the cone
of the whole composition is the same as the cone of the morphism 𝛽, which is given by the
recollement triangle

𝑝! ̃𝚥! ̃𝚥!𝑞!𝑗!
u�

−−→ 𝑝!𝑞
!𝑗! −−→ 𝑝!𝑖∗𝑖∗𝑞!𝑗!

+1−−−→ .

5.2. relative compactification for quotient stacks

In the preceding section we simply assumed that a relative compactification of the diagonal
exists. We will now construct such a compactification for quotient stacks. Thus let 𝑋 be a
scheme of finite type over 𝑘 and let 𝐺 be an affine algebraic group over 𝑘 acting on 𝑋. Let
𝐗 = 𝑋/𝐺 be the corresponding quotient stack.

Constructing a relative compactification of Δ∶ 𝐗 → 𝐗 × 𝐗 is the same as first constructing a
𝐺 × 𝐺-equivariant relative compactification of (pr2, 𝑎) ∶ 𝐺 × 𝑋 → 𝑋 × 𝑋 (where 𝑎∶ 𝐺 × 𝑋 → 𝑋
is the action map) and then taking the quotient by the 𝐺 × 𝐺 action1. We let

Γ = {(𝑔, 𝑥, 𝑥, 𝑔𝑥) ∈ 𝐺 × 𝑋 × 𝑋 × 𝑋}

be the graph of (pr2, 𝑎).
We pick a 𝐺 × 𝐺-equivariant compactification 𝐺 of 𝐺 and let Γ be the closure of Γ in

𝐺 × 𝑋 × 𝑋 × 𝑋. We have an open embedding 𝑗 of 𝐺 × 𝑋 ≅ Γ into Γ and proper map 𝑓 ∶ Γ → 𝑋 × 𝑋
given by projection on the last two factors. The composition 𝑓 ∘ 𝑗 is equal to (pr2, 𝑎).

Instead of viewing Γ as the graph of (pr2, 𝑎) we can drop the third factor and regard Γ as the
graph of the action map, i.e.

Γu� = {(𝑔, 𝑥, 𝑔𝑥) ∈ 𝐺 × 𝑋 × 𝑋}.

The closure Γu� of Γu� in 𝐺 × 𝑋 × 𝑋 identifies with Γ. Thus for ease of notation we will from now
on always set Γ = Γu� and Γ = Γu�.

Definition 5.5. Let 𝐗 = 𝑋/𝐺. With the above construction we set

𝐗 = Γ/𝐺 × 𝐺 .

We have an open embedding 𝑗 ∶ 𝑋 ↪ 𝐗 and a proper morphism Δ∶ 𝐗 → 𝐗 × 𝐗 induced by the
map 𝑓 above, such that Δ = Δ ∘ 𝑗.

Remark 5.6. In the case of 𝐺 = 𝔾u� the compactification Γ is explicitly described in [dg2]. In
particular, if 𝑋 is smooth it is shown there that Γ is smooth over 𝐺 = ℙ1. It is possible to extend
the methods of [dg2] to quotients by higher dimensional tori. The resulting constructions are
highly useful for doing explicit computations.

1Here u� × u� acts on u� × u� by (u�1, u�2) ⋅ (u�, u�) = (u�2u�u�−1
1 , u�1u�).
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5 base change for non-proper maps

It is useful to consider only partial compactifications. For this let 𝑉 be a 𝐺-stable subvariety
of 𝐺 and let Γu� be the closure of Γ in 𝐺 × 𝑉 . We set

𝐗u� = Γu�/𝐺 × 𝐺 .

Clearly, if {𝑉u�} is an open cover of 𝐺 by 𝐺-stable subvarieties, then {𝐗u�u�
} is an open cover of 𝐗.

5.3. good stacks

Let 𝐗 = 𝑋/𝐺 be a quotient stack as before. For any morphism of stacks ℎ∶ 𝐘 → 𝐗 we set
𝓛𝐘𝐗 = 𝐗 ×𝐗×𝐗 𝐘. Thus we have the Cartesian diagram

𝓛𝐘𝐗 𝐗

𝐘 𝐗 × 𝐗

u�𝐘

Δ

Δ∘ℎ

Let us fix a relative compactification Δ∶ 𝐗 → 𝐗 × 𝐗 as in Section 5.2. Using the notation of
Section 5.1 we set 𝓛𝐘𝐗 = 𝐗 ×𝐗×𝐗 𝐘 and 𝓛u�

𝐘𝐗 = 𝐗u� ×𝐗×𝐗 𝐘. We let 𝑞𝐘 ∶ 𝓛𝐘𝐗 → 𝐗 be the
projection morphism and 𝑖𝐘 ∶ 𝓛u�

𝐘𝐗 ↪ 𝓛𝐘𝐗 the inclusion. Thus we have the following central
diagram

𝓛𝐘𝐗 𝓛𝐘𝐗 𝓛u�
𝐘𝐗

𝐗 𝐗 𝐗u�

u�𝐘 u�𝐘

u�𝐘

u�

Definition 5.7. A quotient stack 𝐗 = 𝑋/𝐺 is called good if for every quotient stack 𝐘 = 𝑌/𝐺
and schematic morphism 𝐘 → 𝐗 the functor 𝑖∗𝐘𝑞!

𝐘𝑗! vanishes on 𝐃𝐌𝐨𝐝hol(𝐗).

We will show in Chapter 6 that any stack of the form 𝑋/𝔾u�
u� is good. The reason for this

definition is the following theorem which lets us compute the Hochschild cohomology of
𝐃𝐌𝐨𝐝(𝐗) for good quotient stacks.

Theorem 5.8. If 𝐗 = 𝑋/𝐺 is good, then there exists a canonical structure of monad on 𝑝2,!𝑝!
1

and the morphism 𝑝2,!𝑝!
1 → Δ!Δ! is an isomorphism of monads. In particular there is an

isomorphism of algebras

HH•(𝐃𝐌𝐨𝐝(𝐗)) ≅ ΓdR(𝐗, 𝑝2,!𝑝!
1𝑘𝐗)op.

In other words, Theorem 1.2 holds for good stacks.
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5.3 Good stacks

Proof. We apply Lemma 4.11 to the groupoid 𝓛𝐗 ⇉ 𝐗. Thus we let 𝐆• be the simplicial stack
with

𝐆u� = 𝓛𝐗 ×𝐗 ⋯ ×𝐗 𝓛𝐗⏟⏟⏟⏟⏟⏟⏟⏟⏟
u� factors

.

Any morphism 𝐹 ∶ [𝑛] → [𝑚] in 𝚫op induces a diagram

𝐆u�+1 𝐆u�+1 𝐗

𝐆u� 𝐆u� 𝐗 × 𝐗

Δ

We have to show that base change holds along the left-hand square. But by the assumption and
Lemma 5.4, base change holds along the outer rectangle and the left-hand square. Thus it also
holds along the left-hand square.

Remark 5.9. We expect that most quotient stacks are not good. For example, a direct computa-
tion shows that Theorem 1.2 does not hold for the stack ℙ1/𝔸1, and hence it is not good. For
non-good stacks, Lemma 5.4 instead gives a description of how much the naive expectation for
HH•(𝐃𝐌𝐨𝐝(𝐗)) fails.

We finish this section with some useful observations for proving that a stack is good.

Lemma 5.10. If 𝐗1 = 𝑋1/𝐺1 and 𝐗2 = 𝑋2/𝐺2 are good, then 𝐗1 × 𝐗2 is good.

Proof. Follows from compatibility of 𝑖∗𝐘𝑞!
𝐘𝑗! with ⊠ and coproducts. (Note that 𝓛u�

𝐘(𝐗1 ×𝐗2) =
𝓛u�

𝐘𝐗𝟏 × 𝓛𝐘𝐗𝟐 ∪ 𝓛𝐘𝐗1 × 𝓛u�
𝐘𝐗2.)

Lemma 5.11. Let 𝑈 be a 𝐺-equivariant open subset of 𝑋. If 𝑋/𝐺 is good then 𝑈/𝐺 is good.

Proof. Let 𝐔 = 𝑈/𝐺 and let 𝐘 be a quotient stack mapping into 𝐔 (and hence also into 𝐗).
Consider the diagram

𝓛u�
𝐘𝐔 𝓛𝐘𝐔 𝐔 𝐔

𝓛u�
𝐘𝐗 𝓛𝐘𝐗 𝐗 𝐗

u�𝐔,𝐘

u�

u�𝐔,𝐘

u� u�

u�𝐔

u�

u�𝐗,𝐘 u�𝐗,𝐘 u�𝐗

(5.5)

The vertical arrows are open embeddings and all squares are Cartesian (where we use the same
compactification of 𝐺 for 𝐗 and 𝐔). Thus

𝑖∗𝐔,𝐘𝑞!
𝐔,𝐘𝑗𝐔,! = 𝑖∗𝐔,𝐘𝑞!

𝐔,𝐘𝑗𝐔,!𝛿∗𝛿∗ = 𝛼∗𝑖∗𝐗,𝐘𝑞!
𝐗,𝐘𝑗𝐗,!𝛿∗ = 0.
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5 base change for non-proper maps

The same argument can be used to reduce the computation to a smooth cover. We will now
introduce notation for the special case of the cover Γ → 𝐗. The corresponding covers of the
other relevant stacks are introduced in the following diagram with Cartesian squares.

Лu�
𝐘𝐗 Л𝐘𝐗 Γ Γ

𝓛u�
𝐘𝐗 𝓛𝐘𝐗 𝐗 𝐗

и𝐘 к𝐘 й

u�𝐘 u�𝐘 u�

(5.6)

We note that all vertical morphisms are smooth and the spaces in the top row are schemes. Let
ℎ′ ∶ 𝑋 → 𝑌 be the 𝐺-equivariant morphism of schemes inducing ℎ on quotient stacks. Then the
scheme Л𝐘𝐗 is given by

Л𝐘𝐗 = {(𝑔1, 𝑦, 𝑔2) ∈ 𝐺 × 𝑌 × 𝐺 ∶ (𝑔2, ℎ′(𝑦), 𝑔1ℎ′(𝑦)) ∈ Γ}.

Lemma 5.12. A stack 𝑋/𝐺 is good if and only if for each morphism 𝑌/𝐺 → 𝑋/𝐺 the compo-
sition и∗

𝐘к
!
𝐘й! vanishes on 𝐃𝐌𝐨𝐝hol(Γ)u�×u�−mon.

Proof. Follows from the fact that pullback along the smooth vertical morphisms in (5.6) is
conservative [dg1, Lemma 5.1.6] and permutes with the other morphisms up to a shift.

Lemma 5.13. If there exists a 𝐺-stable open cover 𝑈u� of 𝑋 such that all stacks 𝑈u�/𝐺 are good,
then 𝑋/𝐺 is good.

Proof. Let 𝐔u� = 𝑈u�/𝐺 be the corresponding quotient stacks. We first show that the stacks
𝓛u�

𝐘𝐔u� form an open cover of 𝓛u�
𝐘𝐗2. For this it suffices to show that the open subschemes

Л𝐘𝐔u� cover Л𝐘𝐗. Let (𝑔1, 𝑦, 𝑔2) be a point of Л𝐘𝐗. Then there exists some 𝑈u� with ℎ′(𝑦) ∈ 𝑈u�.
But then 𝑔1ℎ′(𝑦) is also in 𝑈u� and hence (ℎ′(𝑦), 𝑔2, 𝑔1ℎ′(𝑦)) ∈ 𝐔u�. Thus (𝑔1, 𝑦, 𝑔2) is in Л𝐘𝐔u�.

It now suffices to show that the restrictions of 𝑖∗𝐘𝑞!
𝐘𝑗!ℱ to 𝓛u�

𝐘𝐔u� vanish for every ℱ ∈
𝐃𝐌𝐨𝐝(𝐗). But this follows from the diagram (5.5) (for 𝐔u� instead of 𝐔) and the goodness of
𝐔u�.

Let {𝑉u�} be a 𝐺-stable open cover of 𝐺 and consider the corresponding open cover {𝐗u�u�
} of

𝐗. We obtain open covers {𝓛u�u�,𝐘𝐗} and {𝓛u�
u�u�,𝐘𝐗} of 𝓛𝐘𝐗 and 𝓛u�

𝐘𝐗 respectively. We let
𝑖u�u�,𝐗, 𝑞u�u�,𝐗 and 𝑗u�u�

be the corresponding maps, i.e.

𝓛u�u�,𝐘𝐗 𝓛u�
u�u�,𝐘𝐗 𝐗u�u�

𝐗.
u�u�u�,𝐗 u�u�u�,𝐗 u�u�u�

Lemma 5.14. With the above notation, the 𝐗 is good if and only 𝑖∗u�u�,𝐘𝑞!
u�u�,𝐘𝑗u�u�,! vanishes on

𝐃𝐌𝐨𝐝hol(𝐗) for all 𝑉u� and all 𝐘 → 𝐗.
2 This is not completely obvious, since the 𝐔u� do not necessarily form a cover of 𝐗. For example, consider ℙ1 with

the usual linear 𝔾u�-action and the usual affine cover.
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5.3 Good stacks

Proof. Similar to the proof of Lemma 5.13.

35



6

torus quotients

In this chapter we will apply the tools from the previous chapter to torus quotient stacks.
Specifically, we will prove the following theorem.
Theorem 6.1. Let 𝐺 ≅ 𝔾u�

u� be a torus acting locally linearly on a scheme 𝑋 of finite type over
𝑘. Then the stack 𝐗 = 𝑋/𝐺 is good.

Together with Theorem 5.8 this implies our main result, Theorem 1.2.
Remark 6.2. We only use the assumption that the action is locally linear to prove Lemma 6.4,
i.e. that Stab 𝐗 is locally finite. Thus it would suffice to assume that 𝑋 can be covered by open
subschemes for which Lemma 6.4 holds.
Remark 6.3. Theorem 6.1 actually holds for 𝐺 the product of a torus and a finite Abelian group.
The argument is exactly the same.

By Lemma 5.13, it suffices to prove Theorem 6.1 for stacks 𝑋/𝐺 with 𝑋 affine. We fix an
isomorphism 𝐺 ≅ 𝔾u�

u� and compactify 𝐺 to (ℙ1)u�. The variety (ℙ1)u� can be covered by
𝐺-equivariant open subvarieties of the form 𝔸u�. Thus by Lemma 5.14, it suffices to check
goodness for the relative compactification 𝔾u�

u� ⊆ 𝔸u�. To simplify notation, we drop the
subscript 𝔸u� from the notation and set 𝐗 = 𝐗𝔸u� and similarly for the various maps.

We fix a quotient stack 𝐘 = 𝑌/𝐺 and a morphism ℎ∶ 𝐘 → 𝐗, induced by a 𝐺-equivariant
morphism ℎ′ ∶ 𝑌 → 𝑋. According to Lemma 5.12, rather than working with stack directly, we
can base change to schemes. We will use the notation of Lemma 5.12, but for ease of notation
we will drop the subscript 𝐘 from the maps. Thus we are concerned with the diagram

Лu�
𝐘𝐗 Л𝐘𝐗 Γ Γ,и к й

where we have to show that и∗к!й! vanishes on 𝐃𝐌𝐨𝐝hol(Γ)u�×u�−mon.
The general idea is to introduce a 𝔾u�-action that contracts Лu�

𝐘𝐗 onto Л𝐘𝐗. In order to do
so, we will cut the scheme

Л𝐘𝐗 = {(𝑔1, 𝑦, 𝑔2) ∈ 𝐺 × 𝑌 × 𝐺 ∶ (𝑔2, ℎ′(𝑦), 𝑔1ℎ′(𝑦)) ∈ Γ}

into pieces according to the subgroups of 𝐺 that stabilize ℎ′(𝑦). For this let Stab 𝐗 be the set of
all closed subgroups of 𝐺 that are stabilizers of points of 𝑋, i.e.

Stab 𝐗 = {𝐺u� ∶ 𝑥 ∈ 𝑋}.



Lemma 6.4. The set Stab 𝐗 is finite.

Proof. Since 𝑋 is affine, it can be embedded 𝐺-equivariantly into some 𝔸u� with a linear
𝑇 -action. For 𝔸u�/𝑇 the statement is easy to see.

Let 𝑆 be closed subgroup of 𝐺 and let 𝑋u� be the 𝑆-fixed points of 𝑋. Since 𝐺 is Abelian (and
hence 𝑆 a normal subgroup), 𝑋u� is a 𝐺-stable closed subscheme of 𝑋. Hence 𝑋u�/𝐺 is a closed
substack of 𝐗. Let 𝑆 be the closure of 𝑆 in 𝐺 = 𝔸u� and consider the space

Лu�
𝐘𝐗 = {(𝑔1, 𝑦, 𝑔2) ∈ 𝐺×𝑌×𝐺 ∶ ℎ′(𝑦) ∈ 𝑋u�, (𝑔2, ℎ′(𝑦), 𝑔1ℎ′(𝑦)) ∈ Γ and 𝑔2 ∈ 𝑔1𝑆} ⊆ Л𝐘𝐗.

Lemma 6.5. The subspaces Лu�
𝐘𝐗 for 𝑆 ∈ Stab 𝐗 cover Л𝐘𝐗.

Proof. Let Л𝐘𝐗 be the smooth cover of 𝓛𝐘𝐗. Consider the spaces

Лu�
𝐘𝐗 = {(𝑔1, 𝑦, 𝑔2) ∈ 𝐺×𝑌×𝐺 ∶ ℎ′(𝑦) ∈ 𝑋u�, (𝑔2, ℎ′(𝑦), 𝑔1ℎ′(𝑦)) ∈ Γ and 𝑔2 ∈ 𝑔1𝑆} ⊆ Л𝐘𝐗.

The closure of Лu�
𝐘𝐗 in Л𝐘𝐗 is exactly Лu�

𝐘𝐗. It is easy to see that the subspaces Лu�
𝐘𝐗 for

𝑆 ∈ Stab 𝐗 cover Лu�
𝐘𝐗. Now the statement follows from the fact that the closure of a finite

union is the union of the individual closures.

It will be useful to have a slight generalization of the schemes Лu�
𝐘𝐗. Let 𝑆1 ⊆ 𝑆2 be two

subgroups of 𝐺 contained in Stab 𝐗. We set

Лu�1,u�2
𝐘 𝐗 = {(𝑔1, 𝑦, 𝑔2) ∈ 𝐺 × 𝑌 × 𝐺 ∶ ℎ′(𝑦) ∈ 𝑋u�2, (𝑔2, ℎ′(𝑦), 𝑔1ℎ′(𝑦)) ∈ Γ and 𝑔2 ∈ 𝑔1𝑆1}.

Clearly we have Лu�1,u�2
𝐘 𝐗 ⊆ Лu�1𝐗 and Лu�

𝐘𝐗 = Лu�,u�
𝐘 𝐗.

Consider the Cartesian square of closed embeddings

Лu�1,u�2,u�
𝐘 𝐗 Лu�

𝐘𝐗

Лu�1,u�2
𝐘 𝐗 Л𝐘𝐗

u�u�
u�1,u�2

иu�1,u�2 и

u�u�1,u�2

Lemma 6.6. For any 𝑆1 ⊆ 𝑆2 in Stab 𝐗 and any ℱ ∈ 𝐃𝐌𝐨𝐝hol(Γ)u�×u�−mon we have

иu�1,u�2,∗𝑖!u�1,u�2
к!й!ℱ = 0.

Proof. The scheme Лu�1,u�2,u�𝐗 is given by

{(𝑔1, 𝑦, 𝑔2) ∈ 𝐺 × 𝑌 × 𝐺 ∶ ℎ′(𝑦) ∈ 𝑋u�2, (𝑔2, ℎ′(𝑦), 𝑔1ℎ′(𝑦)) ∈ Γ and 𝑔2 ∈ 𝑔1(𝑆1 − 𝑆1)}.
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6 torus quotients

If 𝑆1 = 𝑆1 the statement is trivially true. Otherwise the scheme 𝑆1 − 𝑆1 is the union of
hyperplanes 𝐻u� of 𝑆1. It suffices to prove the statement when further restricting to

{(𝑔1, 𝑦, 𝑔2) ∈ 𝐺 × 𝑌 × 𝐺 ∶ ℎ′(𝑦) ∈ 𝑋u�2, (𝑔2, ℎ′(𝑦), 𝑔1ℎ′(𝑦)) ∈ Γ and 𝑔2 ∈ 𝑔1𝐻u�}.

for all 𝑖. Let 𝐻 be one such hyperplane. We will assume that 𝐻 is contained in the closure of
the connected component of 1 ∈ 𝑆1. The proof for 𝐻 in a different component is the same, up
to a shift by an element of 𝐺. Let иu� be the inclusion of

𝑍 = {(𝑔1, 𝑦, 𝑔2) ∈ 𝐺 × 𝑌 × 𝐺 ∶ ℎ′(𝑦) ∈ 𝑋u�2, (𝑔2, ℎ′(𝑦), 𝑔1ℎ′(𝑦)) ∈ Γ and 𝑔2 ∈ 𝑔1𝐻}

into Лu�1,u�2
𝐘 𝐗. We want to compute

и∗
u� 𝑖!u�1,u�2

к!й!ℱ.

We will do so be introducing a contractive 𝔾u�-action on Γ and Лu�1,u�2
𝐘 𝐗 such that the morphism

𝜅 ∘ 𝑖u�1,u�2
∶ Лu�1,u�2

𝐘 𝐗 → Γ

is 𝔾u�-equivariant.
We write 𝐺 ≅ 𝐺1 ×𝑆1 for some subgroup 𝐺1 of 𝐺. This given a corresponding decomposition

of the monad 𝐺 ≅ 𝔸u� as 𝐺 = 𝐺1𝑆1. Let 𝐻′ = 𝐺1𝐻. We note that 𝐺 ∩ 𝐻′ = ∅.
We chose an action 𝜇 of 𝔾u� on 𝑆1 that contracts 𝑆1 onto 𝐻. This induces an action of 𝔾u�

on 𝐺 = 𝐺1𝑆1 by 𝑢 ⋅ 𝑡𝑠 = 𝑡𝜇(𝑢, 𝑠), contracting 𝐺 onto 𝐻′. Further we obtain an action of 𝔾u�
on Γ that keeps the first 𝑋 coordinate fixed. By construction this action contracts Γ onto a
closed subvariety of Γ − Γ. We will denote this subvariety by 𝑍1 and the contraction morphism
𝜋1 ∶ Γ → 𝑍1 by 𝜋1.

We can also lift the action to Лu�1,u�2
𝐘 𝐗 where it contracts onto 𝑍. We will denote the corre-

sponding contraction morphism by 𝜋∶ Лu�1,u�2
𝐘 𝐗 → 𝑍 . The morphism 𝜅 ∘ 𝑖u�1,u�2

∶ Лu�1,u�2
𝐘 𝐗 → Γ

is equivariant with respect to these 𝔾u�-actions and on its image the action keeps the second
𝑋-coordinate fixed.

We note that the D-modules й!ℱ and 𝑖!u�1,u�2
к!й!ℱ are monodromic with respect to these

𝔾u�-actions. Thus the contraction principle Theorem 4.9 implies that

и∗
u� 𝑖!u�1,u�2

к!й!ℱ = 𝜋∗𝑖!u�1,u�2
к!й!ℱ.

By construction, the square
Лu�1,u�2𝐗 𝑍

Γ 𝑍1

u�

к∘u�u�1,u�2

u�1

38



is Cartesian. Let us call the right vertical map 𝑓 . Base change yields

𝜋∗𝑖!u�1,u�2
к!й!ℱ = 𝑓 !𝜋1,∗й!ℱ.

Finally, let 𝑖u�1
∶ 𝑍1 ↪ Γ be the inclusion. Applying the contraction principle again we obtain

𝑓 !𝜋1,∗й!ℱ = 𝑓 !𝑖∗u�1
й!ℱ = 0.

Proof of Theorem 6.1. By Lemma 6.5 the closed subschemes Лu�
𝐘𝐗 for 𝑆 ∈ Stab 𝐗 cover Л𝐘𝐗.

If 𝑆1, 𝑆2 ∈ Stab 𝐗, then
Лu�1

𝐘 𝐗 ∩ Лu�2
𝐘 𝐗 = Лu�1∩u�2, u�1u�2

𝐘 .

Thus the theorem follows from an iterated Mayer-Vietoris argument using Lemmas 6.6.
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