Student-No: ______ Section: _____

Very short answer questions

- 1. 2 marks Each part is worth 1 marks. Please write your **simplified** answers in the boxes. **Marking scheme:** 1 for each correct, 0 otherwise
 - (a) Differentiate $e^{\cos(\log x)}$. Recall that $\log x = \log_e x = \ln x$.

Answer:
$$e^{\cos(\log x)} \cdot (-\sin(\log x)) \cdot \frac{1}{x}$$

Solution: This requires us to apply the chain rule twice.

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}x} \left[e^{\cos(\log x)} \right] &= e^{\cos(\log x)} \cdot \frac{\mathrm{d}}{\mathrm{d}x} \left[\cos\left(\log x \right) \right] \\ &= e^{\cos(\log x)} (-\sin(\log x)) \cdot \frac{\mathrm{d}}{\mathrm{d}x} \log x \\ &= e^{\cos(\log x)} (-\sin(\log x)) \cdot \frac{1}{x} \end{split}$$

(b) If $x^2 + y^2 = \sin(x+y)$ compute $\frac{dy}{dx}$.

Answer:
$$\frac{dy}{dx} = \frac{\cos(x+y) - 2x}{2y - \cos(x+y)}$$

Solution: Differentiate the equation

$$2x + 2y \frac{dy}{dx} = \cos(x+y) \cdot \left(1 + \frac{dy}{dx}\right)$$
$$\frac{dy}{dx} = \frac{\cos(x+y) - 2x}{2y - \cos(x+y)}$$

Short answer questions — you must show your work

- 2. 4 marks Each part is worth 2 marks.
 - (a) Differentiate $f(x) = (x^2 + 1)^{\sin(x)}$.

Solution: We use logarithmic differentiation; so

$$\log f(x) = \log(x^2 + 1) \cdot \sin x$$

$$\frac{f'(x)}{f(x)} = \frac{\mathrm{d}}{\mathrm{d}x} \left[\log(x^2 + 1) \cdot \sin x \right] = \cos x \cdot \log(x^2 + 1) + \frac{2x \sin x}{x^2 + 1}$$

$$f'(x) = f(x) \cdot \left(\cos x \cdot \log(x^2 + 1) + \frac{2x \sin x}{x^2 + 1}\right) \text{ or equivalently}$$
$$= (x^2 + 1)^{\sin(x)} \cdot \left(\cos x \cdot \log(x^2 + 1) + \frac{2x \sin x}{x^2 + 1}\right)$$

Marking scheme:

- 1 mark for using logarithmic differentiation, i.e. write that $\log(f(x)) = \sin(x)^2 \cdot \ln(x^2+1)$ provided they also write that the derivative of $\log f(x)$ is f'(x)/f(x). It is not enough just to write "Use log-diff (or similar)" they have to get to f'(x)/f(x) = blah or $f'(x) = f(x) \times blah$.
- 1 mark for correct derivative for f(x); accept as correct answer also $f'(x) = f(x) \cdot blah$.
- (b) Consider a function of the form $f(x) = Ae^{kx}$ where A and k are constants. If f(0) = 3 and f(2) = 5, find the constants A and k.

Solution: The two pieces of information give us

$$f(0) = A = 3 f(2) = Ae^{2k} = 5$$

Thus we know that A=3 and so $f(2)=5=3e^{2k}$. Hence

$$e^{2k} = \frac{5}{3}$$
$$2k = \log(5/3)$$
$$k = \frac{1}{2} \cdot \log(5/3).$$

Marking scheme:

- One mark for each correct constant.
- This one is supposed to be straight forward.

Long answer question — you must show your work

3. 4 marks If $x^2 \cos(y) + 2xe^y = 8$, then find y' at the points where y = 0. You must justify your answer.

$$x^{2}\cos(0) + 2xe^{0} = 8$$
$$x^{2} + 2x - 8 = 0$$
$$(x+4)(x-2) = 0$$

So x = 2, -4.

• Now we use implicit differentiation to get y' in terms of x, y:

$$x^2\cos(y) + 2xe^y = 8 \qquad \text{differentiate both sides}$$

$$x^2\cdot(-\sin y)\cdot y' + 2x\cos y + 2xe^y\cdot y' + 2e^y = 0$$

• Now set y = 0 to get

$$x^{2} \cdot (-\sin 0) \cdot y' + 2x \cos 0 + 2xe^{0} \cdot y' + 2e^{0} = 0$$
$$0 + 2x + 2xy' + 2 = 0$$
$$y' = -\frac{2+2x}{2x} = -\frac{1+x}{x}$$

- So at (x, y) = (2, 0) we have $y' = -\frac{3}{2}$,
- and at (x,y) = (-4,0) we have $y' = -\frac{3}{4}$.

- 1 mark for finding BOTH x = 2, -4 as the x-values when y = 0 on the given curve.
- 2 marks for implicit differentiation (they do not need to isolate y').
- Note that students can get one of the above without the other. ie if students implicit-diff but not work out x, then they get 1 mark. Similarly if students get both x but do not implicit-diff, they get 1 mark.
- 1 mark for computing at least one of y' = -3/2 at x = 2, or y' = -3/4 at x = -4.

Student-No: _____ Section: ____

Very short answer questions

- 1. 2 marks Each part is worth 1 marks. Please write your **simplified** answers in the boxes. **Marking scheme:** 1 for each correct, 0 otherwise
 - (a) Differentiate $e^{\sin^2(x)}$

Answer:
$$2\sin(x) \cdot \cos(x) \cdot e^{\sin^2(x)}$$

Solution: This requires us to apply the chain rule twice.

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}x} \left[e^{\sin^2(x)} \right] &= e^{\sin^2(x)} \cdot \frac{\mathrm{d}}{\mathrm{d}x} \left[\sin^2(x) \right] \\ &= e^{\sin^2(x)} (2\sin(x)) \cdot \frac{\mathrm{d}}{\mathrm{d}x} \sin(x) \\ &= e^{\sin^2(x)} (2\sin(x)) \cdot \cos(x) \end{split}$$

(b) If $x^3 + y^4 = \cos(x^2 + y)$ compute $\frac{dy}{dx}$.

Answer:
$$-\frac{2x\sin(x^2+y) + 3x^2}{4y^3 + \sin(x^2+y)}$$

Solution: Differentiate the equation

$$3x^{2} + 4y^{3} \frac{dy}{dx} = -\sin(x^{2} + y) \cdot \left(2x + \frac{dy}{dx}\right)$$
$$\frac{dy}{dx} = -\frac{2x\sin(x^{2} + y) + 3x^{2}}{4y^{3} + \sin(x^{2} + y)}$$

Short answer questions — you must show your work

- 2. 4 marks Each part is worth 2 marks.
 - (a) Differentiate $f(x) = x^{\cos^3(x)}$.

 ${\bf Solution:}\ \ {\bf We}\ \ {\bf use}\ \ {\bf logarithmic}\ \ {\bf differentiation;}\ \ {\bf so}$

$$\ln f(x) = \ln(x) \cdot \cos^3(x)$$

$$\frac{f'(x)}{f(x)} = \frac{\mathrm{d}}{\mathrm{d}x} \left[\ln(x) \cdot \cos^3(x) \right] = 3\cos^2(x) \cdot (-\sin(x)) \cdot \ln(x) + \frac{\cos^3(x)}{x}$$

$$f'(x) = f(x) \cdot \left(3\cos^2(x) \cdot (-\sin(x)) \cdot \ln(x) + \frac{\cos^3(x)}{x}\right) \text{ or equivalently}$$
$$= x^{\cos^3(x)} \cdot \left(-3\cos^2(x)\sin(x)\ln(x) + \frac{\cos^3(x)}{x}\right)$$

Marking scheme:

- 1 mark for using logarithmic differentiation, i.e. write that $\log(f(x)) = \ln(x) \cdot \cos^3(x)$ provided they also write that the derivative of $\log f(x)$ is f'(x)/f(x). It is not enough just to write "Use log-diff (or similar)" they have to get to f'(x)/f(x) = blah or $f'(x) = f(x) \times blah$.
- 1 mark for correct derivative for f(x); accept as correct answer also $f'(x) = f(x) \cdot blah$.
- (b) Consider a function of the form $f(x) = Ae^{kx}$ where A and k are constants. If f(0) = 2 and f(5) = 3, find the constants A and k.

Solution: The two pieces of information give us

$$f(0) = A = 2 f(5) = Ae^{5k} = 3$$

Thus we know that A=2 and so $f(5)=3=2e^{5k}$. Hence

$$e^{5k} = \frac{3}{2}$$

 $5k = \ln(3/2)$
 $k = \frac{1}{5} \cdot \ln(3/2)$.

Marking scheme:

- One mark for each correct constant.
- This one is supposed to be straight forward.

Long answer question — you must show your work

3. 4 marks If $x^2e^y + 4x\cos(y) = 5$, then find y' at the points where y = 0. You must justify your answer.

$$x^{2}e^{0} + 4x\cos(0) = 5$$
$$x^{2} + 4x - 5 = 0$$
$$(x+5)(x-1) = 0$$

So x = 1, -5.

• Now we use implicit differentiation to get y' in terms of x, y:

$$x^2e^y + 4x\cos(y) = 5 \qquad \text{differentiate both sides}$$

$$x^2 \cdot e^y \cdot y' + 2xe^y + 4x(-\sin(y)) \cdot y' + 4\cos(y) = 0$$

• Now set y = 0 to get

$$x^{2} \cdot e^{0} \cdot y' + 2xe^{0} + 4x(-\sin(0)) \cdot y' + 4\cos(0) = 0$$
$$x^{2}y' + 2x + 4 = 0$$
$$y' = -\frac{4+2x}{x^{2}}.$$

- So at (x, y) = (1, 0) we have y' = -6,
- and at (x,y) = (-5,0) we have $y' = \frac{6}{25}$.

- 1 mark for finding BOTH x = 1, -5 as the x-values when y = 0 on the given curve.
- 2 marks for implicit differentiation (they do not need to isolate y').
- Note that students can get one of the above without the other. ie if students implicit-diff but not work out x, then they get 1 mark. Similarly if students get both x but do not implicit-diff, they get 1 mark.
- 1 mark for computing at least one of y' = -6 at x = 1, or y' = 6/25 at x = -5.

Student-No: ______ Section: _____

Very short answer questions

- 1. 2 marks Each part is worth 1 marks. Please write your **simplified** answers in the boxes. **Marking scheme:** 1 for each correct, 0 otherwise
 - (a) Differentiate $\sin(e^{5x})$

Answer:
$$\cos(e^{5x}) \cdot e^{5x} \cdot 5$$

Solution: This requires us to apply the chain rule twice.

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\sin(e^{5x}) \right] = \cos\left(e^{5x}\right) \cdot \frac{\mathrm{d}}{\mathrm{d}x} \left[e^{5x}\right]$$
$$= \cos(e^{5x})(e^{5x}) \cdot \frac{\mathrm{d}}{\mathrm{d}x} [5x]$$
$$= \cos(e^{5x})(e^{5x}) \cdot 5$$

(b) If $e^y = xy^2 + x$, compute $\frac{dy}{dx}$.

Answer:
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2 + 1}{e^y - 2xy}$$

Solution: Differentiate the equation

$$e^{y} \frac{dy}{dx} = x \cdot 2y \frac{dy}{dx} + y^{2} + 1$$
$$\frac{dy}{dx} (e^{y} - 2xy) = y^{2} + 1$$
$$\frac{dy}{dx} = \frac{y^{2} + 1}{e^{y} - 2xy}$$

Short answer questions — you must show your work

- 2. 4 marks Each part is worth 2 marks.
 - (a) Differentiate $f(x) = (x^2 + 1)^{(x^2+1)}$.

Solution: We use logarithmic differentiation; so

$$\ln f(x) = \ln(x^2 + 1) \cdot (x^2 + 1)$$

$$\frac{f'(x)}{f(x)} = \frac{\mathrm{d}}{\mathrm{d}x} \left[\ln(x^2 + 1) \cdot (x^2 + 1) \right] = \frac{2x}{x^2 + 1} (x^2 + 1) + 2x \ln(x^2 + 1) = 2x (1 + \ln(x^2 + 1))$$

$$f'(x) = f(x) \cdot 2x(1 + \ln(x^2 + 1))$$
 or equivalently
= $(x^2 + 1)^{x^2 + 1} \cdot 2x(1 + \ln(x^2 + 1))$

Marking scheme:

- 1 mark for using logarithmic differentiation, i.e. write that $\ln(f(x)) = (x^2 + 1) \cdot \ln(x^2 + 1)$ provided they also write that the derivative of $\log f(x)$ is f'(x)/f(x). It is not enough just to write "Use log-diff (or similar)" they have to get to f'(x)/f(x) = blah or $f'(x) = f(x) \times blah$.
- 1 mark for correct derivative for f(x); accept as correct answer also $f'(x) = f(x) \cdot blah$.
- (b) Consider a function of the form $f(x) = Ae^{kx}$ where A and k are constants. If f(0) = 2 and f(3) = 1, find the constants A and k.

Solution: The two pieces of information give us

$$f(0) = A = 2 f(3) = Ae^{3k} = 1$$

Thus we know that A=2 and so $f(3)=1=2e^{3k}$. Hence

$$e^{3k} = \frac{1}{2}$$

$$3k = \ln(1/2)$$

$$k = \frac{1}{3} \cdot \ln(1/2) = -\frac{\ln 2}{3}.$$

Marking scheme:

- One mark for each correct constant. They do not need to be simplified.
- This one is supposed to be straight forward.

Long answer question — you must show your work

3. 4 marks If $x^2 + (y+1)e^y = 5$, then find y' at the points where y = 0. You must justify your answer.

$$x^{2} + (1)e^{0} = 5$$
$$x^{2} + 1 = 5$$
$$x^{2} = 4$$

So x = 2, -2.

• Now we use implicit differentiation to get y' in terms of x, y:

$$2x + (y+1)e^y \frac{\mathrm{d}y}{\mathrm{d}x} + e^y \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

• Now set y = 0 to get

$$2x + (0+1)e^{0}\frac{dy}{dx} + e^{0}\frac{dy}{dx} = 0$$
$$2x + \frac{dy}{dx} + \frac{dy}{dx} = 0$$
$$x + \frac{dy}{dx} = 0$$

- So at (x, y) = (2, 0) we have y' = -2,
- and at (x, y) = (-2, 0) we have y' = 2.

- 1 mark for finding BOTH x = 2, -2 as the x-values when y = 0 on the given curve.
- 2 marks for implicit differentiation (they do not need to isolate y').
- Note that students can get one of the above without the other. ie if students implicit-diff but not work out x, then they get 1 mark. Similarly if students get both x but do not implicit-diff, they get 1 mark.
- 1 mark for computing at least one of y' = -2 at x = 2, or y' = 2 at x = -2.

Student-No: ______ Section: _____

Very short answer questions

- 1. 2 marks Each part is worth 1 marks. Please write your **simplified** answers in the boxes. **Marking scheme:** 1 for each correct, 0 otherwise
 - (a) Differentiate $\sin (e^{\sin x})$.

Answer:
$$\cos(e^{\sin x}) \cdot e^{\sin x} \cdot \cos x$$

Solution: This requires us to apply the chain rule twice.

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\sin \left(e^{\sin x} \right) \right] = \cos \left(e^{\sin x} \right) \cdot \frac{\mathrm{d}}{\mathrm{d}x} \left[e^{\sin x} \right]$$
$$= \cos \left(e^{\sin x} \right) \cdot e^{\sin x} \frac{\mathrm{d}}{\mathrm{d}x} \left[\sin x \right]$$
$$= \cos \left(e^{\sin x} \right) \cdot e^{\sin x} \cdot \cos x$$

(b) If $\cos(x^2 + y^2) = x + y$ compute $\frac{dy}{dx}$.

Answer:
$$y' = \frac{1 + 2x\sin(x^2 + y^2)}{1 + 2y\sin(x^2 + y^2)}$$

Solution: Differentiate the equation

$$-\sin(x^2 + y^2) \cdot (2x + 2yy') = 1 + y'$$

$$y'(1 + 2y\sin(x^2 + y^2)) = -(1 + 2x\sin(x^2 + y^2))$$

$$\frac{dy}{dx} = -\frac{1 + 2x\sin(x^2 + y^2)}{1 + 2y\sin(x^2 + y^2)}$$

Short answer questions — you must show your work

- 2. 4 marks Each part is worth 2 marks.
 - (a) Differentiate $f(x) = (\sin x)^{\tan x}$.

Solution: We use logarithmic differentiation; so

$$\log f(x) = \tan(x)\log(\sin x)$$

$$\frac{f'(x)}{f(x)} = \tan x \cdot \frac{\cos x}{\sin x} + \sec^2(x) \log \sin x$$
$$= 1 + \frac{\log \sin x}{\cos^2 x}$$

$$f'(x) = f(x) \cdot \left(1 + \frac{\log \sin x}{\cos^2 x}\right)$$
 or equivalently
= $(\sin x)^{\tan x} \cdot \left(1 + \frac{\log \sin x}{\cos^2 x}\right)$

Marking scheme:

- 1 mark for using logarithmic differentiation, i.e. write that $\log(f(x)) = \tan x \log \sin x$ provided they also write that the derivative of $\log f(x)$ is f'(x)/f(x). It is not enough just to write "Use log-diff (or similar)" they have to get to f'(x)/f(x) = blah or $f'(x) = f(x) \times blah$.
- 1 mark for correct derivative for f(x); accept as correct answer also $f'(x) = f(x) \cdot blah$.
- (b) Consider a function of the form $f(x) = Ae^{kx}$ where A and k are constants. If f(0) = -2 and f(7) = -3, find the constants A and k.

Solution: The two pieces of information give us

$$f(0) = A = -2 f(7) = Ae^{7k} = -3$$

Thus we know that A = -2 and so $f(7) = -3 = -2e^{7k}$. Hence

$$e^{7k} = \frac{3}{2}$$

$$7k = \log(3/2)$$

$$k = \frac{1}{7} \cdot \log(3/2).$$

Marking scheme:

- One mark for each correct constant.
- This one is supposed to be straight forward.

Long answer question — you must show your work

3. 4 marks If $x^2 + y^2 = x \cos(y) + y \cos(x)$, then find y' at the points where y = 0. You must justify your answer.

$$x^{2} + 0 = x \cos 0 + 0 = x$$
$$x^{2} - x = 0$$
$$x(x - 1) = 0$$

So x = 0, 1.

• Now we use implicit differentiation to get y' in terms of x, y:

$$x^{2} + y^{2} = x\cos(y) + y\cos(x)$$
$$2x + 2yy' = xy'(-\sin y) + \cos y + y(-\sin x) + y'\cos x$$

• Now set y = 0 to get

$$2x = -xy' \sin 0 + \cos 0 + y' \cos x$$
$$2x = 1 + y' \cos x$$
$$y' = \frac{2x - 1}{\cos x}$$

- So at (x, y) = (0, 0) we have y' = -1.
- and at (x, y) = (1, 0) we have $y' = \sec(1)$.

- 1 mark for finding BOTH x = 0, 1 as the x-values when y = 0 on the given curve.
- 2 marks for implicit differentiation (they do not need to isolate y').
- Note that students can get one of the above without the other. ie if students implicit-diff but not work out x, then they get 1 mark. Similarly if students get both x but do not implicit-diff, they get 1 mark.
- 1 mark for computing at least one of y' = -1 at x = 0, or $y' = \sec(1)$ at x = 1.