Exotic sheaves and actions of quantum affine algebras

Clemens Koppensteiner (joint work with Sabin Cautis)
University of British Columbia

Exotic sheaves

Consider the (equivariant) derived categories of the (Grothendieck–Springer resolution). These categories are endowed with an action of the affine braid group. The *exotic t-structures* are the unique t-structures on these categories such that

1. the positive braids act right t-exact, and
2. the pushforward to the base is t-exact.

They were most famously used by Bezrukavnikov and Mirković [BM] to prove deep results from modular representation theory.

Categorical actions and braid groups

Typically:

- Exotic t-structures arise very naturally from categorical actions.
- They were most famously used by Bezrukavnikov and Mirković [BM] to prove deep results from modular representation theory.

Results: inducing exotic t-structures

For our purposes, we identify the weights with n-tuples \(\ell \) of integers (e.g. for \(\mathfrak{g}_0 \), the roots are \(a_1 = (-1, 1) \) and \(a_n = (1, -1) \)). We assume that \(\sum_k k = n \) and all \(k \geq 0 \). In particular, we get an affine braid group action on the central category \(\mathcal{H}(1, \ldots, 1) \).

Our viewpoint

Exotic t-structures arise very naturally from categorical actions.

Applications and future work

- Obtain exotic t-structures on spaces where the known constructions (exceptional sets, tilting) do not apply.
- Of particular interest: exotic t-structures on convolution varieties of the affine Grassmannian (see example on the right). We will expand this to more general convolution varieties in future work.
- We expect that structural results (weight structure, description of irreducibles) can be obtained with our method and be applied to these new examples.

The main example

Define the varieties

\[\mathcal{Y}(\ell) = \mathcal{C}(z)^n \subset L_0 \subset \cdots \subset L_n \subset \mathcal{C}(z)^n : zL_i \subseteq L_{i+1}, \dim(L_i/L_{i+1}) = k_i \]

and

\[\mathcal{G}_{\mathfrak{g}} = \mathcal{Y}(\ell) = \mathcal{C}(z)^n \subset L_0 \subset \cdots \subset L_n \subset \mathcal{C}(z)^n : zL_i \subseteq \mathcal{L}_i, \dim(L_i/L_{i+1}) = k_i \].

These convolution varieties are well-studied and used, for example, to categorify link invariants or give a (quantum) K-theoretic analogue of the geometric Satake equivalence. Note that \(\mathcal{Y}(1, \ldots, 1) \) has an open subvariety isomorphic to \(\mathcal{N} \) and the \(\mathcal{Y}(\ell) \) have open subvarieties isomorphic to partial Grothendieck–Springer resolutions.

Careful analysis of the structure and combinatorics of categorical \(\mathfrak{g}_\mathfrak{b} \)-actions and the associated braid group actions allows us to induce t-structures using the following lemma (which is based on a theorem of Polishchuk [P]).

Lemma. Let \(\Phi : D^b(X) \to D^b(Y) \) be a conservative Fourier–Mukai functor. Assume that we are given a t-structure on \(D^b(Y) \) such that \(\Phi \circ \Phi \) is right t-exact. Then there exists a unique t-structure on \(D^b(X) \) such that \(\Phi \) is t-exact.

How?

References

